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Abstract

Background: Liquid-liquid phase separation (LLPS)
has been increasingly recognized as a crucial mechanism
in the pathogenesis of various neurodegenerative disor-
ders, including Alzheimer’s disease (AD). There remains
a paucity of effective diagnostic biomarkers for this condi-
tion. This study aims to develop and validate a novel LLPS-
related molecular signature to enhance the diagnostic accu-
racy and early detection of AD.

Methods: LLPS-related genes were identified from
online databases and subjected to bioinformatic analyses,
including protein-protein interaction (PPI) network anal-
ysis and least absolute shrinkage and selection operator
(LASSO) regression. Based on the optimal LLPS-related
genes, a diagnosis riskmodel was constructed, and the diag-
nostic ability was evaluated using a receiver operator char-
acteristic (ROC) curve. To elucidate the biological func-
tions of the identified LLPS-related genes, Gene Ontol-
ogy (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) analyses were conducted.

Results: A total of 149 LLPS-related genes were
screened, which were found to be involved in functions
related to oxidative stress, apoptosis, and cancer progres-
sion. The 149 genes were refined to six optimal candi-
dates through PPI network analysis and LASSO regres-
sion: Activator of HSP90 ATPase Activity 1 (AHSA1),
Eukaryotic Translation Initiation Factor 2 Alpha Kinase 2
(EIF2AK2), Heat Shock Protein Family A (Hsp70)Member
4 (HSPA4), Notch Receptor 1 (NOTCH1), Superoxide Dis-
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mutase 1 (SOD1), and Thioredoxin (TXN). Based on the six
optimal genes, a diagnostic risk model was constructed, and
the diagnostic ability was verified to be promising in AD
both in training, internal validation, and two external vali-
dation datasets, with area under ROC curve (AUC) above
0.8. Furthermore, significant correlations were observed
between the expression of these genes and tumor immune
cell infiltration.

Conclusions: A six-gene diagnosis model was con-
structed and verified to exhibit robust diagnostic ability in
AD.
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Introduction

Alzheimer’s disease (AD) is the most prevalent form
of dementia and has emerged as one of the most lethal dis-
eases [1,2]. The incidence of AD is increasing, and themost
recent study indicates that the prevalence of dementia is ex-
pected to double in Europe and triple globally by 2050 [3].
Patients diagnosed with AD typically face poor prognosis,
with amedian survival time ranging from 5 to 10 years post-
diagnosis [4]. Despite the approval of several pharmaco-
logical drugs by the Food and Drug Administration to mit-
igate AD progression [5], the efficacy of these treatments
remains limited, largely due to the heterogeneous nature of
the disease [6]. The absence of early diagnostic tools and
effective therapeutic strategies for AD underscores the crit-
ical need for further exploration of precise molecular mark-
ers characteristic of this neurodegenerative disorder.

The diagnosis of AD is primarily based on clinical
symptomatology, although pathological changes typically
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precede the onset of overt symptoms. Amyloid-β and
tau deposition can occur before clinical manifestations, a
fact that has been incorporated into diagnostic criteria for
asymptomatic individuals [7]. The liquid-liquid phase sep-
aration (LLPS) theory has gained prominence in explain-
ing multiple cellular biological processes, including DNA
damage repair, transcription regulation, and protein degra-
dation. Recent research by Liu et al. [8] has elucidated
the role of LLPS inhibition in hepatocellular carcinoma
metastasis. Their findings demonstrate that circRNA-Y-
box binding protein 1 (YBX1)-mediated phase separation
influences cytoskeleton remodeling, thereby modulating
the metastatic potential of hepatocellular carcinoma cells.
LLPS has also been demonstrated to have close intercon-
nections with the pathogenesis of various neurodegenera-
tive disorders, including AD, which is characterized by the
deposition and generation of amyloid-β and tau proteins
[9]. Wegmann et al. [10] demonstrated that intracellular tau
LLPS induces the formation of subcellular foci with high lo-
cal concentrations of tau in AD. Additionally, heparin has
been found to interact with tau and facilitate its LLPS in
AD [11]. This evidence indicates that LLPS is significantly
correlated with AD progression and may potentially serve
as a diagnostic signature for the disease.

Previous research has reported clinical, mitophagy,
and ferroptosis signatures in AD diagnosis and prognosis
[12–14]. However, limited research has focused on LLPS-
related gene signatures in AD. This study aimed to iden-
tify an LLPS-related diagnostic gene signature for AD pa-
tients using bioinformatic approaches. A six-gene diag-
nostic model was subsequently established. Additionally,
the correlations between these six key genes and immune
cell populations were investigated to elucidate potential im-
munological implications.

Materials and Methods

Data Source

The peripheral blood sample dataset GSE63060 was
downloaded from the Gene Expression Omnibus (GEO)
database (https://www.ncbi.nlm.nih.gov/geo/) as the train-
ing dataset, comprising 145 disease samples and 104 nor-
mal blood samples. For external validation, datasets
GSE1297 and GSE63061 were also obtained. GSE1297
included 22 disease and 9 normal tissue samples, while
GSE63061 contained 139 disease and 134 normal blood
samples.

AD-related genes were retrieved from the Com-
parative Toxicogenomics Database (CTD) (https://ctdb

ase.org/), DisGeNET (https://www.disgenet.org/), and
GeneCards (https://www.genecards.org/) databases using
“Alzheimer’s Disease” as the key word.

LLPS-related genes were downloaded from the
phasepdbv2 database (http://db.phasep.pro/), resulting in a
total of 3775 LLPS-related genes.

Differential Analysis

Differential gene expression analysis was conducted
using the limma package (version 3.58.1, http://www.bi
oconductor.org/packages/release/bioc/html/limma.html,
Walter and Eliza Hall Institute of Medical Research,
Melbourne, Australia) [15] in R software to identify
differentially expressed genes (DEGs) between AD and
control samples from the GSE63060 dataset. The sig-
nificance threshold was set at p < 0.05 and |log2 fold
change (FC)| >0.1. Visualization of the analysis results
was performed using the ggplot 2 package (version 3.5.1,
https://ggplot2.tidyverse.org/articles/ggplot2.html, Hadley
Wickham, New Zealand) [16] in R.

Venn and Functional Analysis

To identify genes associated with LLPS in AD,
we performed a Venn analysis to intersect DEGs,
AD-related genes, and LLPS-related genes. Gene
Ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathway analyses were con-
ducted using the clusterProfiler package (version 4.10.1,
https://www.bioconductor.org/packages/release/bioc/h
tml/clusterProfiler.html, Guangchuang Yu, Southern
Medical University, Guangzhou, China) [17] in R, with
a significance threshold of p < 0.05. For visualization,
we displayed the top 15 enriched pathways if the total
number of significant pathways exceeded 15; otherwise,
all significant pathways were presented.

Unsupervised Cluster Analysis

To investigate the links between overlapping genes
and AD, we performed subtype analysis using Consen-
susClusterPlus (version 1.66.0, https://www.bioconduct
or.org/packages/release/bioc/html/clusterProfiler.html,
Guangchuang Yu, Southern Medical University,
Guangzhou, China) [18]. This analysis was based on
the previously identified overlapping genes. The Parti-
tioning Around Medoids (PAM) algorithm was employed,
with distance quantified using a “1-Pearson” correlation
coefficient. We conducted 100 repetitions, exploring
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cluster numbers (k) ranging from 2 to 10. The optimal
number of clusters (k = 2) was determined through the
evaluation of the cumulative distribution function (CDF).

Single-sample Gene Set Enrichment Analysis (ss-
GSEA), an extension of the Gene Set Enrichment Analysis
(GSEA) method, is widely used in bioinformatics research
to assess immune infiltration. The GSVA package (ver-
sion 1.50.1, https://www.bioconductor.org/packages/releas
e/bioc/html/GSVA.html, Robert Castelo, Universitat Pom-
peu Fabra (UPF), Barcelona, Spain) [19] was used to cal-
culate enrichment scores of 19 distinct immune cell types
across all samples. Immune cell markers were obtained
from the CellMarker and previous publications. Subse-
quently, the ssGSEA method was applied to these mark-
ers to evaluate the immunoactivity score of each immune
cell type, serving as a proxy for infiltration levels. Addi-
tionally, differences in leukocyte antigens between immune
subtypes were examined using Student’s t-test.

Protein-Protein Interaction (PPI) Networks

The STRING database (https://cn.string-db.org/) is a
database of known and predicted PPIs. Interactions in-
clude direct (physical) and indirect (functional) connec-
tions; they arise from the interactions of computational pre-
diction, knowledge transfer between organisms, and other
(major) database aggregation. PPI networks of overlapping
genes were constructed by STRIND database [20]. An in-
teraction relationship greater than 0.4 was preserved. The
core genes that were related to LLPS in AD in the PPI
network were screened based on plug-in Mcode (version
1.4.2, http://apps.cytoscape.org/apps/MCODE, University
of Toronto, Toronto, Canada). Cytoscape software (version
3.9.1, http://www.cytoscape.org, National Institute of Gen-
eral Medical Sciences, Bethesda, MD, USA) was used to
visualize the PPI network.

Least Absolute Shrinkage and Selection Operator
(LASSO) Analysis

LASSO regression is characterized by variable screen-
ing and complexity adjustment while fitting the general-
ized linear model. Based on the core genes from the PPI
network, LASSO analysis was conducted to optimize the
gene combination using the binomial method in the glm-
net package (version 4.1-8, https://glmnet.stanford.edu/arti
cles/glmnet.html, Trevor Hastie, Stanford University, Palo
Alto, CA, USA) [21] in R. A diagnosis risk score model
was established based on the expression levels and coeffi-
cients of genes selected through LASSO analysis. The AD

samples in the GSE63060 training dataset were randomly
divided into training and validation subsets at a ratio of 1:1,
with the latter serving as an internal validation set. The
predictive performance of the risk score model was evalu-
ated using Kaplan-Meier survival analysis and receiver op-
erator characteristic (ROC) curve. All results were subse-
quently validated using both internal and external valida-
tion datasets. Finally, the expression levels of the key genes
were further validated using the GSE63061 blood dataset.

Correlation Analysis

Pearson correlation coefficient analysis, a commonly
used statistical method, was utilized to measure the strength
and direction of linear associations between two variables.
In our study, Pearson correlation coefficients were calcu-
lated using diagnostic model genes and the abundance of
differentially represented immune cell populations.

Statistical Analysis

The statistical analyses were conducted using R soft-
ware version 4.3.2 (R Foundation for Statistical Comput-
ing, Vienna, Austria). Statistical significance was set at p
< 0.05. Wilcoxon and Student’s t-tests were used to in-
vestigate the differences between two groups. Pearson and
spearman methods were used to investigate the correlation
between variables.

The study workflow is shown in Fig. 1.

Results

Differential Expression Analysis

The analysis identified 2338 DEGs associated with
AD, comprising 1123 upregulated and 1215 downregu-
lated genes in AD samples (Fig. 2A). The intersection of
DEGs, AD-related genes, and LLPS-related genes yielded
149 overlapping genes implicated in both LLPS and AD
pathology (Fig. 2B). The functional analysis indicated that
the 149 genes were involved into 725 biological processes
(BPs), 61 molecular functions (MFs), 76 cellular compo-
nents (CC), and 27 KEGG pathways. The top 15 enriched
terms for each category are presented in Fig. 2C–F. Notably,
the identified genes were associated with functions related
to oxidative stress, apoptosis, and cancer progression.
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Fig. 1. Study design. GEO, Gene Expression Omnibus; AD, Alzheimer’s disease; LLPS, liquid-liquid phase separation; HLA, human
leukocyte antigen; DEGs, differential expressed genes. The picture is drawn in Microsoft PowerPoint 2021 (Microsoft. com, Redmond,
WA, USA).

Differential Subtypes

Based on the 149 overlapping genes, subtype anal-
ysis divided the AD samples into two distinct subtypes:
subtype 1 and subtype 2 (Fig. 3A). Significant differ-
ences in the distribution of 14 immune cell types were ob-
served between the two subtypes (p < 0.05) (Fig. 3B).
Notably, macrophages, memory T-Cell Surface Glycopro-
tein CD4 (CD4) T cells, and natural killer cell (NKT) ex-
hibited significantly higher levels in subtype 2 compared
to subtype 1 (p < 0.05). Given the recent breakthroughs
in cancer immunotherapy and the importance of human
leukocyte antigens (HLAs) as indicators of immunother-
apy, we examined the expression of 28 HLA genes across
the two subtypes. Our analysis revealed significant differ-
ences in nine HLA genes between the two subtypes (p <

0.05) (Fig. 3C). Specifically, HLA-Major Histocompatibil-
ity Complex Class II DR Alpha (DRA) and HLA-Major
Histocompatibility ComplexClass II DMBeta (DMB)were

significantly higher in subtype 2 relative to subtype 1 (p
< 0.05). Conversely, HLA-F, HLA-H, HHLA3, HLA-E,
HLA-A, HLA-C, and HLA-B were significantly lower in
subtype 2 compared to subtype 1 (p < 0.05).

Identification of Diagnosis Genes and Construction of
Diagnosis Risk Score Model

To further screen the important LLPS genes in AD,
PPI network analysis and LASSO regression were con-
ducted. The PPI network analysis revealed 1278 interaction
pairs (Fig. 4A), indicating a close relationship among these
genes. Subsequently, through Molecular Complex Detec-
tion (MCODE) plugin analysis, 23 core genes were identi-
fied for further investigation (Fig. 4B). LASSO regression
analysis was used to optimize the 23 core genes, resulting
in the selection of six genes based on AD data from the
training dataset (Fig. 4C). The diagnostic risk model was
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Fig. 2. Identification of the LLPS-related genes. (A) Volcano plot for selection of differential expressed genes (DEGs) between AD
and normal samples. (B) Venn plot for selection of LLPS-related genes and 149 genes. (C) Gene Ontology (GO) biological process
analysis for the 149 genes. (D) GO molecular function (MF) for the 149 genes. (E) GO cellular component for the 149 genes. (F) Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathways for the 149 genes. LLPS, liquid-liquid phase separation; CTD, Comparative
Toxicogenomics Database.

established as follows: Risk score = 0.216 × Superoxide
Dismutase 1 (SOD1) – 0.014× Eukaryotic Translation Ini-
tiation Factor 2 Alpha Kinase 2 (EIF2AK2) + 3.446 × Ac-
tivator of HSP90 ATPase Activity 1 (AHSA1) + 0.706 ×
Thioredoxin (TXN) + 0.825 × Heat Shock Protein Family
A (Hsp70) Member 4 (HSPA4) + 0.130 × Notch Recep-
tor 1 (NOTCH1). ROC analysis showed that the diagno-
sis of the model was promising, with an area under ROC
curve (AUC) of 0.808 (Fig. 4D). Moreover, the diagnos-
tic efficacy of the risk score model was further validated
through an internal and two external datasets, with an AUC
above 0.7 (Fig. 4E,F). These results demonstrate that the
constructed diagnostic risk model exhibited robust discrim-
inatory power for AD patients across both training and val-
idation datasets. To further validate the expression levels
of the six identified genes, their expression levels were ex-
amined in two external blood sample datasets, GSE63060
and GSE63061. The results showed that five of the genes
were significantly different between AD and normal groups
in the both datasets (Fig. 4G).

Correlation of Key Genes with Immune Cells

The correlations between the six diagnostic genes in-
corporated in the diagnostic model and the 14 differentially
expressed immune cells across subtypes were investigated
(Fig. 5A–F), revealing significant associations. Specifi-
cally, HSPA4, SOD1, and TXN exhibited negative corre-
lations with Tregs, while NOTCH1 demonstrated a pos-
itive correlation. EIF2AK2 and NOTCH1 showed nega-
tive correlations with CD4 memory T cells, while HSPA4,
SOD1, and TXN displayed positive correlations. EIF2AK2
and NOTCH1 were negatively correlated with NKT, while
SOD1 and TXN were positively correlated with NKT.
EIF2AK2, HSPA4, SOD1, and TXN exhibited positive cor-
relations with macrophages, while NOTCH1 demonstrated
a negative correlation.



Hui Xu, et al. A Six-Gene Signature Related to Liquid-Liquid Phase Separation for Diagnosis of Alzheimer’s DiseaseHui Xu, et al. A Six-Gene Signature Related to Liquid-Liquid Phase Separation for Diagnosis of Alzheimer’s DiseaseHui Xu, et al. A Six-Gene Signature Related to Liquid-Liquid Phase Separation for Diagnosis of Alzheimer’s Disease

764 Actas Esp Psiquiatr 2024;52(6):759–768. https://doi.org/10.62641/aep.v52i6.1762 | ISSN:1578-2735
© 2024 Actas Españolas de Psiquiatría.

Fig. 3. Subtype analysis. (A) Subtype identification. Left panel: empirical cumulative distribution function (CDF) plot of consistency
clustering for k = 2–10. Right panel: sample classification into two distinct subtypes (subtype 1 and subtype 2). (B) Differential immune
cell infiltration between the two subtypes. (C) Comparison of HLA gene expression between the two groups. ns, not significant; *,
p < 0.05; **, p < 0.01; ***, p < 0.001. NKT, natural killer cell; HLA, human leukocyte antigen; ss-GSEA, single-sample Gene
Set Enrichment Analysis; DRA, HLA-Major Histocompatibility Complex Class II DR Alpha; DMB, HLA-Major Histocompatibility
Complex Class II DM Beta.

Discussion

The present study identified 149 genes associated with
LLPS, which were implicated in oxidative stress, apopto-
sis, and cancer progression. Through subtype analysis, all
AD samples were divided into subtype 1 and subtype 2,
with higher immune infiltration in subtype 2. Furthermore,
by using PPI and LASSO analyses, the 149 genes were
optimized into six: AHSA1, EIF2AK2, HSPA4, NOTCH1,
SOD1, and TXN. Based on the six optimal genes, a diag-
nostic risk model was constructed, and the diagnostic abil-
ity was verified to be promising in AD in training, internal
validation, and external validation datasets. Finally, these
genes were significantly correlated with immune cell infil-
tration.

Among the six genes involved in the diagnosticmodel,
four have been implicated in the progression and patholog-

ical mechanisms of AD: AHSA1, EIF2AK2, NOTCH1, and
SOD1. The Notch1 signaling pathway, crucial for brain de-
velopment, exhibits overexpression in AD and may con-
tribute to its pathophysiology [22]. Superoxide dismutase 1
(SOD1), an antioxidant enzyme, is associated with acceler-
ated aging in neurodegenerative diseases [23,24]. AHSA1,
an activator of heat shock protein 90 (Hsp90) ATPase, is
upregulated in various tumors and has been shown to par-
ticipate in various metabolic and development processes in
tumor cells [25–27]. In AD, studies have demonstrated that
Aha1 is upregulated in the hippocampus of tau transgenic
mice, potentially leading to increased levels of oligomeric
and insoluble tau. This upregulation is associated with neu-
ronal loss and cognitive impairments [28,29]. Inhibition
of Aha1 has been proposed as a potential therapeutic strat-
egy to mitigate the formation of toxic tau oligomers and
prevent AD progression [28]. EIF2AK2, also known as
double-stranded RNA-dependent protein kinase R (PKR),
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Fig. 4. Selection of optimal LLPS-related genes and construction of the diagnostic model. (A) Protein-protein interaction (PPI)
networks. (B) Selection of the core genes within the PPI network. (C) LASSO regression analysis. The left panel represents the
coefficient profiles. The right panel represents the selection of λ. The two dashed lines indicate two special values of λ: lambda.min
(left) and lambda.1se (right). (D) ROC curve for the training dataset. (E) ROC curve for the internal validation dataset. (F) ROC
curve for external validation datasets (GSE1297 and GSE63061). (G) Expression levels of the five key genes in GSE63060 (training)
and GSE63061 (validation) datasets. ns, not significant; *, p < 0.05; **, p < 0.01; ****, p < 0.0001. AD, Alzheimer’s disease; CI,
confidence interval; LASSO, least absolute shrinkage and selection operator; ROC, receiver operator characteristic; AUC, area under
ROC curve; AHSA1, Activator of HSP90ATPaseActivity 1; EIF2AK2, Eukaryotic Translation Initiation Factor 2AlphaKinase 2;HSPA4,
Heat Shock Protein Family A (Hsp70) Member 4; NOTCH1, Notch Receptor 1; SOD1, Superoxide Dismutase 1; TXN, Thioredoxin.

has been demonstrated to be involved in various cell reg-
ulatory functions, like antiviral activity, cell cycle, and
apoptosis. The association between EIF2AK2 and AD was
first established in 2007 [30]. Moreover, EIF2AK2 has

been linked to the nucleotide-binding oligomerization do-
main, leucine-rich repeat and pyrin domain-containing pro-
tein 3 (NLRP3) inflammasome, which is known to be ac-
tivated in AD, underscoring the significance of EIF2AK2
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Fig. 5. Correlation between optimal LLPS-related genes in the diagnostic model and immune cells. (A) Correlation of Activator
of HSP90 ATPase Activity 1 (AHSA1) with immune cells. (B) Correlation of Eukaryotic Translation Initiation Factor 2 Alpha Kinase 2
(EIF2AK2) with immune cells. (C) Correlation of Heat Shock Protein Family A (Hsp70) Member 4 (HSPA4) with immune cells. (D)
Correlation of Notch Receptor 1 (NOTCH1) with immune cells. (E) Correlation of Superoxide Dismutase 1 (SOD1) with immune cells.
(F) Correlation of Thioredoxin (TXN) with immune cells. * represents significance; right represents positive correlation; left represents
negative correlation. LLPS, liquid-liquid phase separation.

in the pathogenesis of this neurodegenerative disorder [31].
Lopez-Grancha et al. [32] demonstrated that the inhibition
of EIF2AK2 ameliorates cognitive deficits and neurode-
generation in AD mouse models, as evidenced by restora-
tion of synaptic proteins and reduction of proinflamma-
tory cytokine levels. The roles of HSPA4 and TXN in AD
pathogenesis remain unclear. Two studies suggest that the
HSPA4 protein might be related to specific targets and path-
ways in AD [33,34], although the precise mechanisms re-
main unknown. TXN (thioredoxin) has been implicated in
inflammatory, metabolic, and redox processes across vari-
ous diseases [35–37].

The evidence presented suggests that the six genes in
the diagnostic model may be closely associated with the
progression and pathological mechanisms of AD, further
supporting the robustness of the model. Nevertheless, sev-
eral limitations should be acknowledged. First, the diagno-
sis model requires validation in larger-scale cohorts. Sec-

ond, further investigation is needed to fully elucidate the
mechanisms of action for the six optimal genes, particularly
HSPA4 and TXN. Third, the correlation between the six key
genes and LLPS remains unclear, necessitating additional
research in this area. Finally, there is a current lack of tar-
geted therapeutics based on these diagnostic biomarkers for
AD. Despite these limitations, we have developed an opti-
mal diagnostic model for AD with an AUC above 0.8. This
study provides valuable insights for future research into the
pathological mechanisms of AD and potential therapeutic
targets.

Conclusions

A diagnostic risk model for AD has been developed
incorporating six genes associated with LLPS. These genes
are: AHSA1, EIF2AK2, HSPA4, NOTCH1, SOD1, and
TXN. The diagnostic efficacy of this model has been evalu-
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ated across multiple datasets, demonstrating promising re-
sults in identifying AD. These findings suggest that LLPS-
related genes may play a significant role in AD pathogene-
sis and could serve as potential biomarkers for early detec-
tion and diagnosis.
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