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Abstract

Background: Accurate diagnosis and classification of
Alzheimer’s disease (AD) are crucial for effective treatment
and management. Traditional diagnostic models, largely
based on binary classification systems, fail to adequately
capture the complexities and variations across different
stages and subtypes of AD, limiting their clinical utility.

Methods: We developed a deep learning model inte-
grating a dot-product attention mechanism and an innova-
tive labeling system to enhance the diagnosis and classifi-
cation of AD subtypes and severity levels. This model pro-
cessed various clinical and demographic data, emphasizing
the most relevant features for AD diagnosis. The approach
emphasized precision in identifying disease subtypes and
predicting their severity through advanced computational
techniques that mimic expert clinical decision-making.

Results: Comparative tests against a baseline fully
connected neural network demonstrated that our proposed
model significantly improved diagnostic accuracy. Our
model achieved an accuracy of 83.1% for identifying AD
subtypes, compared to 72.9% by the baseline. In severity
prediction, our model reached an accuracy of 83.3%, out-
performing the baseline (73.5%).

Conclusions: The incorporation of a dot-product at-
tention mechanism and a tailored labeling system in our
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model significantly enhances the accuracy of diagnosing
and classifying AD. This improvement highlights the po-
tential of the model to support personalized treatment strate-
gies and advance precision medicine in neurodegenerative
diseases.
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Introduction

Alzheimer’s disease (AD) is a progressive neurode-
generative disorder that presents significant challenges to
global healthcare. It is the leading cause of dementia in
older adults, characterized by the gradual deterioration of
cognitive functions, including memory, thinking, and be-
havior. The complexity of AD arises from its diverse man-
ifestations, ranging from mild cognitive impairment to se-
vere dementia, making its diagnosis and management par-
ticularly challenging [1].

The pathophysiology of AD involves the accumula-
tion of amyloid-beta plaques and tau tangles in the brain,
leading to neuronal damage and loss. Clinically, the dis-
ease presents with symptoms such as memory loss, confu-
sion, impaired judgment, personality changes, and difficul-
ties in performing daily activities, which worsen over time,
severely impacting the quality of life of patients and their
families [2].

AD subtypes include the Logopenic Variant, charac-
terized by difficulties in word retrieval and sentence repe-
tition; Posterior Cortical Atrophy, marked by visual pro-
cessing deficits and other posterior brain functions; and
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Frontal Variant, involving behavioral changes and execu-
tive dysfunction. Treatment for these subtypes varies: the
Logopenic Variant often requires speech and language ther-
apy, Posterior Cortical Atrophy involves management with
visual aids and occupational therapy, and the Frontal Vari-
ant focuses on behavioral interventions and medications tar-
geting psychiatric symptoms alongside supportive therapies
like cognitive stimulation and physical activity [3]. Accu-
rate diagnosis and classification of AD are crucial for effec-
tive treatment and management, as highlighted by Beach et
al. [4].

Traditional diagnostic methods, which rely on cogni-
tive tests and imaging, are limited in capturing the nuanced
progression and subtypes of AD. This often results in a gen-
eralized treatment approach that fails to effectively address
the individual needs of a patient [5]. Recently, non-imaging
biomarkers like genetics, cerebrospinal fluid (CSF), and
blood-based markers, have emerged as valuable tools for
enhancing diagnostic accuracy [6]. These non-invasive di-
agnostic tools and attention mechanism advances offer sig-
nificant promise for improving the accuracy and efficiency
of disease diagnosis, particularly in medical imaging [7].

This study aimed to develop a model that integrates a
dot-product attention mechanism with an innovative label-
ing system to enhance the precision of AD diagnosis. By se-
lectively focusing on the most clinically relevant data, the
model replicates the decision-making processes of expert
clinicians, leading to improved identification of AD sub-
types and their severity. This refined diagnostic capability
enables the creation of personalized treatment plans tailored
to patients’ specific needs, advancing precision medicine in
the management of neurodegenerative diseases [8].

Related Work

In the past decade, the application of deep learning
in medical diagnostics has seen significant growth, espe-
cially in AD. Numerous machine learning and deep learn-
ing techniques have been investigated for their potential in
the early diagnosis and classification of AD, reflecting a
growing interest in leveraging technology to enhance clini-
cal practices.

Binary Classification Models

Early studies, such as those by Suk ef al. [9] and Lu
et al. [10], utilized Magnetic Resonance Imaging (MRI)
and Positron Emission Tomography (PET) in deep learning
models to distinguish AD patients from healthy controls,

achieving significant diagnostic accuracy. However, these
binary classification models mostly oversimplify the com-
plexity of AD by focusing solely on the presence or absence
of the disease without accounting for its diverse manifes-
tations. Our study advances this approach by incorporat-
ing a dot-product attention mechanism, which enhances the
ability of the model to focus on the most relevant features
for AD diagnosis, thereby improving classification perfor-
mance.

Multi-Class Classification Models

To address the limitations of binary models, multi-
class classification approaches have been developed to cap-
ture the progression of AD effectively. For example,
Ding et al. [11] employed Convolutional Neural Networks
(CNNps) to classify individuals into categories such as cog-
nitively normal, mild cognitive impairment (MCI), and AD,
using multi-modal neuroimaging data. While these models
provide deeper insights into disease stages, their reliance on
extensive imaging data limits their practicality in diverse
clinical settings. Our approach builds on this by integrat-
ing advanced attention mechanisms, improving the inter-
pretability and accuracy of multi-class classification mod-
els.

Incorporation of Non-Imaging Biomarkers

Recent studies have expanded diagnostic approaches
to include non-imaging biomarkers such as genetic data,
cerebrospinal fluid (CSF) analysis, and blood-based mark-
ers, as explored by Ou et al. [12] and Klyucherev et al. [13].
These studies highlight the potential of these non-invasive
tools that predict AD, offering significant enhancements in
diagnostic capabilities. Our study incorporates these ad-
vancements by adopting a multi-modal approach that com-
bines imaging and non-imaging biomarkers, enhancing the
robustness and accuracy of AD diagnostics.

Multi-Modal Deep Learning Approaches

Further advancements have been made with multi-
modal deep learning frameworks, such as those proposed
by Lin et al. [14], which integrate imaging, genetic, and
clinical data. These comprehensive approaches, incorpo-
rating cognitive assessments and lifestyle factors, provide a
holistic view of the patient, thus improving diagnostic ac-
curacy [15—17]. Our study builds on these methodologies
by integrating a dot-product attention mechanism, further
enhancing the interpretability and accuracy of multi-modal
AD diagnosis models.
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Advances in Data Integration and Model Interpretability

The integration of diverse data sources and the en-
hancement of model interpretability through techniques
like attention mechanisms and explainable Al (XAI) have
been crucial in improving the transparency and credibil-
ity of artificial intelligence (AI) models in clinical settings
[18,19]. These models help clinicians understand and trust
the decision-making processes of Al systems. Our model
incorporates these techniques, ensuring that its decision-
making process is transparent and consistent with clinical
expertise.

Emerging Technologies and Future Directions

Emerging technologies such as federated learning and
transfer learning address challenges related to data avail-
ability and privacy, promoting more collaborative and
adaptable research environment [20-23]. These technolo-
gies hold the potential to make Al-driven diagnostics more
accurate, accessible, and secure, paving the way for future
advancements in AD diagnosis.

Challenges and Limitations

Despite these advancements, challenges remain, in-
cluding the heterogeneity of data sources and the difficulty
in acquiring large, well-annotated datasets. Additionally,
many studies focus on broad AD categorizations, which
may not fully capture the nuanced classification of disease
stages and subtypes.

Our Contribution

Our research advances the field by developing a multi-
label deep learning model capable of distinguishing be-
tween AD and non-AD subjects and classifying detailed
AD stages and subtypes. By leveraging a comprehen-
sive dataset encompassing demographic, hematological,
biochemical, endocrine, immunological, and neurological
markers, we aimed to elucidate the complex interrelation-
ships among these factors. Our modular neural network ar-
chitecture processes these data categories independently be-
fore integrating them to enhance diagnostic accuracy and
generalization. This model represents a significant step
toward precision medicine in neurodegenerative diseases,
offering robust tools for early detection and personalized
treatment strategies.

Materials and Methods
Overview

We developed a modular neural network architecture
that utilizes dot-product attention mechanisms to analyze
and predict various AD types based on clinical and demo-
graphic data. Our methodology involves categorizing the
data into specific groups, applying attention mechanisms to
extract key features from each group, and integrating these
features to form a comprehensive prediction. The research
process is systematically illustrated in Fig. 1, which outlines
the steps from data collection and pre-processing to apply-
ing attention mechanisms and the final prediction stages.

Data Categorization

To facilitate detailed analysis, we organized the data
into the following categories based on their relevance to di-
agnosing and understanding Alzheimer’s disease (AD):

e Sex and Age: Basic demographic variables critical
for analyzing AD distribution and progression.

e Blood Chemistry and Hematology: Including
white blood cell count and subtypes (White Blood Cell
(WBC), Neutrophils (NEU), Lymphocytes (LYM), Mono-
cytes (MONO), Eosinophils (ESO), Basophils (BASO)),
red blood cell count and related parameters Red Blood
Cell (RBC), Hemoglobin (HGB), Hematocrit (HCT),
Mean Corpuscular Volume (MCV), Mean Corpuscular
Hemoglobin (MCH), Mean Corpuscular Hemoglobin Con-
centration (MCHC), and platelet count and related parame-
ters (Platelets (PLT), Mean Platelet Volume (MPV), Platelet
Distribution Width (PDW), Procalcitonin (PCT)). These pa-
rameters provide insights into general health and can be as-
sociated with neurodegenerative processes.

e Biochemical Markers: Encompassing liver func-
tion indicators (Total Bilirubin (TBIL), Direct Bilirubin
(DBIL), Indirect Bilirubin (IDBIL), Total Protein (TP),
Albumin (ALB), Globulin (GLB), Albumin to Globu-
lin Ratio (AG ratio)), liver and heart enzymes (Ala-
nine Aminotransferase (ALT), Aspartate Aminotransferase
(AST), Lactate Dehydrogenase (LDH), Gamma-Glutamyl
Transferase (GGT), Alkaline Phosphatase (ALP)), blood
glucose and lipids (Glucose (GLU), Triglycerides (TG),
Total Cholesterol (TCHO), High-Density Lipoprotein
Cholesterol (HDLC), Low-Density Lipoprotein Choles-
terol (LDLC), Apolipoprotein A-1 (APOA1), Apolipopro-
tein B (APOB), Apolipoprotein E (APOE)), electrolytes
and minerals (Potassium (K), Sodium (Na), Chloride (CI),
Calcium (Ca), Phosphorus (P), Magnesium (Mg), Iron
(Fe)), kidney function markers (Urea (UREA), Creatinine
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Fig. 1. Research flowchart (created with Lark (version 7.21.6, Beijing Bytedance technology company Limited, Beijing, China)).

A summary of the research process for developing a modular neural network with dot-product attention mechanisms. The flowchart

outlines steps from data collection and preprocessing to feature extraction via attention mechanisms, culminating in the integration and

prediction of Alzheimer’s disease (AD) subtypes and severity.

(CR), Uric Acid (UA)), inflammation markers (Homocys-
teine (HCY), C-Reactive Protein (CRP)), and vitamins (Vi-
tamin B12 (VB12), Folic Acid (Folicacid)), all of which are
relevant to cognitive functions.

e Endocrine and Immunological Markers: Includ-
ing immunoglobulins and complement system components
(Immunoglobulin A (IGA), Immunoglobulin G (IGG),
Immunoglobulin M (IGM), Complement Component 3
(C3), Complement Component 4 (C4)), thyroid function
tests (Thyroid-Stimulating Hormone (TSH), Triiodothyro-
nine (T3), Thyroxine (T4), Free Triiodothyronine (FT3),
Free Thyroxine (FT4), Thyroid Peroxidase Antibodies
(TPOAD), Thyroglobulin Antibodies (TGAD)), and other
hormones and cancer markers (Prolactin (PRL), Alpha-
Fetoprotein (AFP), Carcinoembryonic Antigen (CEA), Fer-
ritin (FER), Carbohydrate Antigen 19-9 (CA19-9)).

o Neurological Markers: [32-Microglobulin (52mg),
a potential neurodegenerative disease indicator, and the
Mini-Mental State Examination (MMSE) [24], essential for
assessing cognitive function.

o Lifestyle and Demographic Factors: Marital status,
education level, smoking, alcohol consumption, diabetes,
hypertension, coronary heart disease, and activities of daily
living (Marriage, education, smoking, alcohol, Diabetes
Mellitus (DM), Hypertension (HT), Coronary Heart Dis-
ease (CHD), and Activities of Daily Living (ADL)), which
provide insights into the lifestyle and socioeconomic fac-
tors of the patient affecting disease outcomes.

92

Data Pre-processing

We addressed missing values and sample imbalance
during pre-processing to ensure data quality and optimize
model performance. We applied mean imputation to handle
missing values since they were minimal and randomly dis-
tributed. Specifically, missing values for each feature were
replaced with the mean of that feature, preserving dataset
consistency and minimizing the impact on model training.

To address sample imbalance, we used the Synthetic
Minority Over-sampling Technique (SMOTE), which gen-
erates new minority class samples, improving the perfor-
mance of the model on underrepresented classes. SMOTE
was applied specifically to the training set to enhance the
learning and generalization of the model.

All relevant AD factors were normalized to ensure
consistency within the model. Each factor was scaled to
a 0—1 range. For example, for 52mg (with a typical range
of 1-3 mg/L), 1 mg/L was normalized to 0 and 3mg/L to
1. This normalization facilitates consistent comparison and
computation of different factors within the model.

Inclusion and Exclusion Criteria
Inclusion Criteria

e Patients aged 50 years and older.

e Diagnosed with AD or presenting symptoms sugges-
tive of dementia.
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e Comprehensive clinical records are available, in-
cluding complete blood work and medical history.

Exclusion Criteria

e Patients with other types of dementia, such as vas-
cular dementia or dementia with Lewy bodies.

o Incomplete datasets or missing critical health infor-
mation.

e Recent history of substance abuse or conditions
mimicking dementia symptoms, such as severe vitamin de-
ficiencies or thyroid dysfunction.

Integration and Processing

Data were consolidated into four main groups for in-
put into our model: Blood Chemistry, Biochemical Mark-
ers, Endocrine and Immunological Markers, and Lifestyle
and Demographic Factors. This structure allows for tar-
geted processing, enhancing the capacity of the model to
identify significant predictive features. Critical indicators
such as 52mg and MMSE were directly fed into the model
due to their direct relevance to AD diagnosis [25].

The model utilizes a dot-product attention mechanism
to focus on significant data features, calculating attention
scores to emphasize the most informative aspects for AD
prediction. This technique enhances the accuracy and rele-
vance of the model in clinical settings.

Target Definition

The final target variable was the predicted stage and
subtype of AD, derived from the integrated analysis of the
categorized data. This approach ensures that the model out-
puts are clinically applicable, supporting personalized treat-
ment and management plans for AD patients.

Dot-Product Attention Mechanism

Our model employs a dot-product attention mecha-
nism, as illustrated in Fig. 2, to enhance AD analysis. This
technique allows the model to focus on the most relevant
clinical data, improving its capacity to accurately identify
AD subtypes and stages.

f

MatMul

SoftMax

it

Mask(opt.)

?

Scale

)

MatMul

%

Input

Fig. 2. Dot-product attention workflow (created with Lark
(version 7.21.6, Beijing Bytedance technology company Lim-
ited, Beijing, China)). The figure illustrates the workflow of the
dot-product attention mechanism, which enhances model preci-
sion by focusing on critical clinical data features. This process
is key to accurately identifying different AD subtypes and stages.
MatMul, Matrix Multiplication.

Process Overview

(1) Input Transformation: Clinical data, such as Blood
Chemistry and Biochemical Markers, were transformed
into a 1 x n vector format. This simplified representation
facilitates processing within the attention mechanism.

(2) Attention Scores: The model calculates attention
scores by performing a dot product operation on the input
vector with itself. These scores were then scaled to maintain
their interpretability and significance.

(3) Context Vector: Using the attention scores, the
model generates a context vector, a summary that captures
the most critical information from the input data. This is
achieved by computing a weighted sum of the data features,
with weights derived from the normalized attention scores.
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Mathematical Description

The dot-product attention mechanism is mathemati-
cally represented as follows:
xXxT X
dy;

Here, X represents the input vector, and di is a scal-
ing factor that stabilizes the magnitude of the attention
scores. This mechanism enables the model to effectively
process diverse clinical data, leading to more accurate and
detailed AD diagnoses, including subtypes and severity as-
sessments.

Attention(X) = softmax (

Network Architecture

The proposed network architecture consists of mul-
tiple specialized modules, each tailored to handle spe-
cific data types, such as Blood Chemistry and Biochemical
Markers. Each module employs the dot-product attention
mechanism to process and highlight the most relevant in-
formation, resulting in a context vector for each data cate-

gory.

Steps of the Architecture

The architecture operates through the following steps
(Fig. 3):

(1) Input Processing: Data from each category is input
into its respective module. Complex datasets with multiple
indicators are decomposed, while simpler datasets with sin-
gle indicators, like 52mg or MMSE, are processed directly.

(2) Attention Mechanism: The attention mechanism
extracts key features from each module by computing at-
tention scores. These scores are then normalized to ensure
consistency and meaningful results.

(3) Context Vector Combination: The context vectors
from all modules are combined into a single comprehensive
feature vector, ensuring a uniform representation of all data
categories.

(4) Fully Connected Layers: The combined feature
vector passes through several fully connected layers, culmi-
nating in a softmax layer that predicts the type and severity
of AD.

This architecture enables the model to focus on the
most significant data features, improving prediction accu-
racy.

Label Design

The model incorporates a novel labeling system that
assesses AD severity and differentiates between its sub-
types. It outputs three values, each ranging from 0 and 1,
corresponding to the following AD subtypes [26]:

(1) Logopenic Variant: Primarily associated with lan-
guage impairment.

(2) Posterior Cortical Atrophy: Affecting visual pro-
cessing.

(3) Frontal Variant: Involving changes in behavior and
personality.

The severity of each subtype is calculated, and overall
disease severity is determined by averaging these values.
This labeling system allows for detailed and nuanced pre-
dictions, enhancing the diagnostic accuracy of the model
and providing valuable insights into AD progression.

Experiments and Evaluation

In this section, we outline the experimental setup and
evaluation methods to demonstrate the effectiveness of our
proposed model compared to a baseline model. We aimed
to highlight the improvements gained from integrating a
dot-product attention mechanism and an innovative label-
ing system for detailed analysis and classification of AD.

Experimental Setup

We utilized a comprehensive dataset comprising clin-
ical and demographic data, including sex, age, blood chem-
istry, hematology, biochemical markers, endocrine and im-
munological markers, neurological markers, and lifestyle
factors. Data were collected from 430 eligible patients at
the Affiliated Kangning Hospital of Ningbo University be-
tween January 2022 and December 2023. The dataset was
divided as follows: 70% for training, 15% for validation,
and 15% for testing.

Two models were compared in our experiments:

(1) Baseline model: A fully connected neural network
with a similar number of layers and parameters as our pro-
posed model but without specialized data processing mech-
anisms.

(2) Proposed model: Incorporating a dot-product at-
tention mechanism to enhance data processing. This model
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Fig. 3. Structure of the proposed method (created with Lark (version 7.21.6, Beijing Bytedance technology company Limited,

Beijing, China)). It outlines the structure of the proposed method, detailing steps from input processing and attention mechanism

application to context vector integration and final prediction using fully connected layers. This structure improves the accuracy of AD

subtype and severity predictions. B2mg, 52-Microglobulin; MMSE, Mini-Mental State Examination.

specifically outputs three values estimating the severity of
different AD subtypes. These values were averaged to com-
pute an overall severity score.

Evaluation Metrics

We employed accuracy as our primary metric. This
involved:

o Checking the accuracy with which each model iden-
tified AD subtypes and severity levels.

e Evaluating subtype accuracy by determining if the
model correctly identified each subtype, such as the Lo-
gopenic Variant, Posterior Cortical Atrophy, and Frontal
Variant, with an output value threshold of 0.5 indicating the
presence of the subtype.

e Measuring severity accuracy by defining specific
thresholds for different severity levels of the disease—0.25
for asymptomatic, 0.5 for mild, 0.75 for moderate, and 1.0
for severe—and comparing the model’s predictions against
these benchmarks.
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Statistical Analysis

We utilized GraphPad 8.0 software (GraphPad Soft-
ware LLC, San Diego, CA, USA) for statistical analysis.
Descriptive statistics, including mean, standard deviation,
minimum, and maximum values, were used to summarize
the data. Differences between groups were analyzed us-
ing the chi-square test for categorical data and the #-test for
quantitative data. Data were presented as mean =+ standard
deviation for normally distributed data and median (P25,
P75) for non-normally distributed data.

Results
Patient Demographic Data

In our study, we compared the performance of our pro-
posed model, which incorporates a dot-product attention
mechanism, with a traditional baseline neural network. The
evaluation focused on the accuracy of identifying AD sub-
types and the precision in predicting disease severity. To
ensure a thorough analysis, we included a detailed demo-
graphic and clinical profile of the patients, encompassing
variables such as age, sex, marital status, body mass index
(BMI), disease duration, smoking and drinking history, and
medical histories of diabetes and hypertension. These char-
acteristics are summarized in Table | and were included to
control for potential confounders, enhancing the robustness
of the performance assessment for our model.

Table 1. Patient demographics.

Characteristic Value (n = 430)
Age—year 77.22 + 8.87
Female sex—no. (%) 215 (50.00)
Marital status—married. (%) 254 (59.07)
Body mass index 24.83 £ 7.16

Duration of disease—year 5.5(7.6,16.4)2

Smoking and drinking history—no. (%)

Smoking history—no. (%) 91 (21.16)
Drinking history—no. (%) 48 (11.16)
History of diabetes—no. (%) 245 (59.98)
History of hypertension—no. (%) 49 (11.40)

Note: (a) Median (P25, P75).

Comparison of Training, Validation, and Testing Results

The performance of the model was evaluated across
the training, validation, and testing datasets using key met-
rics: accuracy, precision, recall, and F1 score (Table 2). The

results indicate consistent performance across all datasets,
with only slight variations in these metrics. This consis-
tency suggests that the model generalizes well and is ro-
bust in predicting AD subtypes and severity across different
datasets.

Table 2. Comparison of model performance across training,
validation, and testing sets.

Dataset Accuracy  Precision  Recall  F1 score
Training 92% 90% 91% 90.5%
Validation 90% 88% 89% 88.5%
Testing 89% 87% 88% 87.5%

Model Performance in Recognizing AD Subtypes

We evaluated the ability of the model to recognize dif-
ferent AD subtypes using accuracy, precision, recall, and
F1 score, with results summarized in Table 3. Addition-
ally, confusion matrices for each subtype provide a visual
representation of the performance of the model, showing
the frequency of correct and incorrect classifications. These
matrices help identify the strengths and areas for improve-
ment in the model.

Table 3. Model performance in AD subtype classification.

AD subtype Accuracy Precision Recall F1 score

Logopenic Variant 89% 87% 85% 86%

Posterior Cortical Atrophy 91% 90% 88% 89%

Frontal Variant 88% 86% 84% 85%
Subtype Accuracy

The accuracy of correctly identifying AD subtypes
in the test set is summarized in Table 4. The proposed
model demonstrated significant improvements in recogniz-
ing subtypes compared to the baseline model. Specifi-
cally, accuracy increased to 81.4% for the Logopenic Vari-
ant, 83.6% for Posterior Cortical Atrophy, and 84.2% for
the Frontal Variant, compared to 68.4%, 74.0%, and 76.3%,
respectively, with the baseline model. Overall accuracy im-
proved from 72.9% with the baseline model to 83.1% with
the proposed model. These enhancements are crucial for
clinical practice as they enable more precise diagnoses of
the specific AD subtype, essential for determining the most
effective treatment approach and management plan.
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Table 4. Accuracy comparison for AD subtype identification between the baseline and the proposed models.

Posterior Cortical Atrophy

Frontal Variant ~ Overall accuracy

Model Logopenic Variant
Baseline model 68.4%
Proposed model 81.4%

74.0%
83.6%

76.3%
84.2%

72.9%
83.1%

Table 5. Accuracy comparison for AD severity prediction between the baseline and the proposed models.

Model Asymptomatic Mild Moderate  Severe  Overall accuracy
Baseline model 78.2% 74.3% 71.5% 70.1% 73.5%
Proposed model 86.4% 83.6% 82.2% 81.1% 83.3%

Severity Accuracy

The accuracy of predicting AD severity levels is sum-
marized in Table 5. The proposed model outperformed
the baseline model, accurately predicting the asymptomatic
stage at 86.4%, mild severity at 83.6%, moderate severity
at 82.2%, and severe stages at 81.1%. These figures rep-
resent significant improvements over the accuracies from
the baseline model at 78.2%, 74.3%, 71.5%, and 70.1%,
respectively. The overall accuracy for severity prediction
increased from 73.5% to 83.3%. Accurate severity assess-
ment is crucial for tailoring treatment plans, impacting pa-
tient care and prognosis.

The results suggest that the proposed model signifi-
cantly enhances diagnostic accuracy for AD in terms of sub-
type identification and severity prediction. This improve-
ment has substantial implications for clinical practice, pro-
viding clinicians with more accurate diagnostic tools that
facilitate personalized treatment strategies, ensuring that in-
terventions are appropriately matched to the specific condi-
tion of the patient and disease stage.

Discussion

Our study reveals that the proposed model, incorpo-
rating a dot-product attention mechanism, significantly out-
performs the traditional baseline neural network in diagnos-
tic accuracy. This improvement is evident in the superior
ability of the model to identify AD subtypes and accurately
predict disease severity.

The enhanced performance of our model can be pri-
marily attributed to the structural benefits of the attention
mechanism. Unlike conventional models that uniformly
process data, our model selectively emphasizes the most
informative features. This selective focus is crucial be-
cause AD manifests differently in patients, affecting them
in diverse ways that standard models may not capture ef-
fectively. Previous research has indicated that attention

mechanisms can significantly enhance the interpretability
and performance of neural networks in medical diagnosis
tasks [27,28].

In practical terms, the attention mechanism functions
similarly to a skilled clinician who, through experience, pri-
oritizes specific symptoms or patient history details over
others. By simulating this selective focus, the model pro-
cesses data and interprets it in a clinically relevant man-
ner. This approach leads to more precise predictions of the
type severity of AD, which is invaluable in clinical settings.
Such precision aids healthcare providers in developing per-
sonalized treatment plans tailored to the unique needs of
each patient.

Moreover, accurately classifying the disease subtype
and predicting its progression enable earlier and more tar-
geted interventions, which are crucial for effective AD
management. Early and precise interventions can signif-
icantly alter the disease trajectory, improving patient out-
comes and quality of life, as supported by recent stud-
ies [29,30].

Our proposed model advances the goal of precision
medicine in AD care, where treatments are customized
to the nuances of conditions for each patient. This ap-
proach enhances treatment efficacy and optimizes resource
allocation within healthcare systems, ensuring appropri-
ate treatments are delivered to patients at the right time.
Emerging evidence supports the potential of such personal-
ized medicine in revolutionizing chronic disease manage-
ment [31].

However, several limitations of our model must be ac-
knowledged. First, the performance of the model heavily
depends on the quality and diversity of the input data. Bi-
ases or inconsistencies in the clinical and demographic data
used for training could impact the generalizability of the
model.

Second, despite integrating advanced computational
techniques and the dot-product attention mechanism, the in-
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terpretability of the model remains challenging. The com-
plexity of deep learning models can limit the ability of clin-
icians to fully trust and adopt these systems in practice.

Third, our study primarily utilizes retrospective data,
and prospective validation in diverse, real-world clinical
settings is necessary to confirm the efficacy and robust-
ness of the model. Additionally, the model was trained
and tested on datasets predominantly consisting of patients
diagnosed with specific AD subtypes. Extending this ap-
proach to a more heterogeneous population with various
neurodegenerative conditions could reveal further insights
and potential limitations.

Finally, while our model shows promise in enhancing
diagnostic precision, it does not yet incorporate longitudi-
nal data to track disease progression over time. Future work
should focus on integrating longitudinal datasets to improve
the ability of the model to predict disease trajectory and
treatment outcomes.

Conclusions

Our study introduces a model enhanced by an atten-
tion mechanism and a sophisticated labeling system, sig-
nificantly improving the diagnosis and classification of AD
subtypes and severity levels. Experimental results demon-
strate that this model outperforms traditional neural net-
works in accuracy. This advancement underscores the po-
tential of our approach to providing more precise and clini-
cally relevant diagnoses, supporting the development of tar-
geted treatments and management strategies for AD.
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