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Abstract

Background: Schizophrenia (SCZ) is a type of psychi-
atric disorder characterized bymultiple symptoms. Our aim
is to decipher the relevant mechanisms of immune-related
gene signatures in SCZ.

Methods: The SCZ dataset and its associated im-
munoregulatory genes were retrieved using Gene Expres-
sion Omnibus (GEO) and single-sample gene set enrich-
ment analysis (ssGSEA). Co-expressed gene modules were
determined through weighted gene correlation network
analysis (WGCNA). To elucidate the functional character-
istics of these clusters, Gene Ontology (GO) and Kyoto En-
cyclopedia of Genes and Genomes (KEGG) analyses were
used. Additionally, gene set enrichment analysis (GSEA)
and Gene Set Variation Analysis (GSVA) were conducted
to identify enriched pathways for the immune subgroups. A
protein-protein interaction (PPI) network analysis was per-
formed to identify core genes relevant to SCZ.

Results: A significantly higher immune score was ob-
served in SCZ compared to control samples. Seven dis-
tinct gene modules were identified, with genes highlighted
in green selected for further analysis. Using the Cell-
type Identification By Estimating Relative Subsets Of RNA
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Transcripts (CIBERSORT)method, degrees of immune cell
adhesion and accumulation related to 22 different immune
cell types were calculated. Significantly enriched biopro-
cesses concerning the immunoregulatory genes with dif-
ferential expressions included interferon-beta, IgG binding,
and response to interferon-gamma, according to GO and
KEGG analyses. Eleven hub genes related to immune infil-
tration emerged as key players among the three top-ranked
GO terms.

Conclusions: This study underscores the involve-
ment of immunoregulatory reactions in SCZ develop-
ment. Eleven immune-related genes (IFITM1 (inter-
feron induced transmembrane protein 1), GBP1 (guany-
late binding protein 1), BST2 (bone marrow stromal cell
antigen 2), IFITM3 (interferon induced transmembrane
protein 3), GBP2 (guanylate binding protein 2), CD44
(CD44 molecule), FCER1G (Fc epsilon receptor Ig), HLA-
DRA (major histocompatibility complex, class II, DR al-
pha), FCGR2A (Fc gamma receptor IIa), IFI16 (interferon
gamma inducible protein 16), and FCGR3B (Fc gamma re-
ceptor IIIb)) were identified as hub genes, representing po-
tential biomarkers and therapeutic targets associated with
the immune response in SCZ patients.
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Introduction

Schizophrenia (SCZ) is a psychiatric disorder charac-
terized by diverse manifestations, including delusions, dis-



Chengchong Li, et al. Identification of Immune-Related Gene Signature in SchizophreniaChengchong Li, et al. Identification of Immune-Related Gene Signature in SchizophreniaChengchong Li, et al. Identification of Immune-Related Gene Signature in Schizophrenia

Actas Esp Psiquiatr 2024;52(3):276–288. https://doi.org/10.62641/aep.v52i3.1648 | ISSN:1578-2735
© 2024 Actas Españolas de Psiquiatría.

277

organized speech and behavior, and hallucinations, among
others. Additionally, certain SCZ patients may exhibit im-
pairments in executive functioning and attention [1]. The
lifetime risk of SCZ is approximately 1%, accompanied by
significant morbidity and mortality. Additionally, this con-
dition imposes substantial economic burdens on both fami-
lies and society [2–4]. Despite the accessibility of Western
medicine for schizophrenia, a significant proportion of pa-
tients exhibit a poor response to these treatments [5]. Cur-
rently, all available drugs for SCZ are recognized to take
effect via blocking the type 2 dopaminergic receptor. How-
ever, over 60 years after discovering this theory, innovative
effective target drugs have not been produced [6,7]. Pre-
vious studies have indicated that inherited genetic variants
play an influential role in SCZ pathology, as evidenced by
its high heritability [8,9]. Therefore, it is essential to em-
ploy a bioinformatics approach to identify a novel gene sig-
nature associated with the development of SCZ.

The field of immunotherapy offers a novel and
promising approach for the treatment of certain malignan-
cies, such as breast cancer and hepatocellular carcinoma
[10,11]. Immune responses, including the infiltration of im-
mune cells, actively contribute to the pathological mech-
anisms underlying a wide range of diseases [12]. SCZ
is a complex disorder resulting from the interplay of ge-
netic, immune, and other factors [13]. Previous research
has demonstrated that various SCZ phenotypes are associ-
ated with the stimulation of the immune-inflammatory re-
sponse system (IRS) [14,15]. The relationship between the
immune system and the incidence and progression of men-
tal illnesses has become an increasingly important topic in
psychiatry. Relevant investigations have revealed a strong
role of the immune response in psychiatric disorders [16].
Likewise, this study found that immunomodulatory genes
are closely linked to the onset and progression of SCZ.
However, the use of an immune gene expression-based sig-
nature in SCZ has not been fully explored.

The objective of this study was to utilize a bioinfor-
matics approach to identify a gene signature correlated with
immune infiltration and its role in SCZ development. The
Gene Expression Omnibus (GEO) and single-sample gene
set enrichment analysis (ssGSEA) were employed to ob-
tain the SCZ dataset, calculate immune-related gene mod-
ules, and grade the samples accordingly. Based on the pro-
portions of immune infiltrations, the samples were classi-
fied into high immunity and low immunity groups. The
researchers then identified genes with differential expres-
sions related to these subgroups and intersected them with
genes that had strong immunological associations from the
weighted gene correlation network analysis (WGCNA).
This allowed for the classification of individuals with SCZ

into two clusters of immune-related differentially expressed
genes (IDEGs), labeled A and B. The differentially ex-
pressed genes (DEGs) between these two clusters were fur-
ther analyzed using gene set enrichment analysis (GSEA)
for function annotations. Additionally, protein-protein in-
teraction (PPI) networks of IDEGs were constructed to
identify core genes associated with SCZ. Finally, these hub
genes were utilized to predict regulatory networks involved
in the etiology of SCZ. These findings pave the way for a
better understanding of the immunoregulatory role in SCZ
development.

Materials and Methods

GEO Data Acquisition

The original data for SCZ was obtained from three
datasets: GSE17612 [17], GSE21138 [18], and GSE21935
[19], all available on the GEO (https://www.ncbi.nlm.n
ih.gov/geo/) [20], and processed using the GEOquery R
package (version 3.1.3, https://bioconductor.org/packages/
release/bioc/html/GEOquery.html) [21]. The GSE17612
dataset consists of a total of 51 samples, including 23 con-
trol and 28 SCZ samples, utilizing the GPL570 data plat-
form. The GSE21138 dataset comprises 59 samples, with
29 control and 30 SCZ samples, and uses the GPL1570
data platform. Similarly, the GSE21935 dataset includes
42 samples, with 19 control and 23 SCZ samples, utilizing
the GPL1570 data platform. All data from these samples
was inputted into the limma R package (version 4.0.2, The
R Foundation for Statistical Computing, Vienna, Austria)
[22] for normalization and standardization of the expres-
sion profiles. To mitigate batch effects, the ComBat func-
tion from the sva package [23] was employed to integrate
the three datasets.

Immune Score Analysis of Samples

The ssGSEA technique [24] and the ImmPort plat-
form (https://immport.niaid.nih.gov) [25] were utilized to
assess the contents of immunomodulatory genes from sam-
ples with SCZ. The ssGSEA approach enabled the calcu-
lation of immune gene expression levels, grading of the
samples, and quantitative analysis of immune gene expres-
sion levels across the three datasets. By estimating the im-
mune infiltration enrichment scores of disease samples, two
subgroups with high and low immune levels were distin-
guished. For the ssGSEA analysis, the Gene Set Variation
Analysis (GSVA) R package was employed. The ImmPort
database served as the source of gene sets related to the im-
mune system to be analyzed.

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://bioconductor.org/packages/release/bioc/html/GEOquery.html
https://bioconductor.org/packages/release/bioc/html/GEOquery.html
https://immport.niaid.nih.gov
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Identifying DEGs and Analyzing Enrichment

To identify DEGs related to the aforementioned two
subgroups, this study employed the limma R package and
established the criteria of log2FC> 0.5 and p adj< 0.05 for
significance. The DEGs were visualized using the ggplot2
and pheatmap R packages. Additionally, Gene Ontology
(GO) [25] and Kyoto Encyclopedia of Genes and Genomes
(KEGG) enrichment [26], as well as gene set enrichment
analysis (GSEA), were performed using the ClusterPro-
filer package [27] in R software (version 3.6.3, Univer-
sity of Auckland, Auckland, New Zealand). The MSigDB
database (http://www.gsea-msigdb.org/gsea/msigdb) [28]
was utilized to obtain reference data including “Hallmark
Gene sets”, “KEGG Gene sets”, and “GO Gene sets” for
GSEA. A False Discovery Rate (FDR) value below 0.25
and a p-value smaller than 0.05 indicated statistical signifi-
cance. The study also conducted Gene Set Variation Analy-
sis (GSVA) [29] using the Tidyverse package within R soft-
ware, selecting “C2.cp.all.v7.5.1.symbols” as the reference.

The WGCNA R package [30] was employed for
weighted gene co-expression network analysis (WGCNA).
To determine the soft threshold, the pickSoftThreshold
function was utilized, revealing that a value of 3 was the
best fit. With the soft threshold established, a scale-free
network was constructed, a topology matrix was created,
and hierarchical clusteringwas conducted. This exploration
identified gene modules by dynamically cutting the hierar-
chical tree using a minimum module size of 30, and then
calculated the Eigengenes. Next, a module correlation net-
work on the basis of the Eigengenes was constructed, and
hierarchical clustering was performed to generate 7 distinct
modules. Finally, the Pearson statistical method was se-
lected to determine the correlation between themodules and
clinical features.

Distinguishing Pattern Based on Immune Related Genes

Consensus clustering serves as an approach to iden-
tify the characteristics of potential clusters from datasets,
such as a dataset on microarray. To more accurately distin-
guish different immune subtypes of SCZ, ConsensusClus-
terPlus was utilized to conduct such an analysis of the target
dataset. Specifically, we used the overlapping genes hav-
ing the strongest immune association withWGCNA and the
differential expressions between subgroups of high and low
immunity. The figure of clusters was set to 9, and the pro-
cess was repeated 1000 times while extracting 80% of the
total samples. The k-means algorithm was performed for
clustering, and the Spearman distance metric was used to
calculate the similarity between samples.

PPI Network Construction

The STRING platform (https://cn.string-db.org/) [31]
was selected to acquire the PPI network concerning hub
genes. Subsequently, Cytoscape software (Version 3, In-
stitute for Systems Biology, San Diego, CA, USA) was uti-
lized for visualization. The importance of related genes was
determined using CytoHubba [32], with those ranking at the
top and having scores above 10 considered as core genes.

Functional Similarities Analysis

The GOSemSim package [33] in R software was uti-
lized for performing functional similarity analysis of the
core genes.

Immune Infiltration Analysis

The Cell-type Identification By Estimating Rela-
tive Subsets Of RNA Transcripts (CIBERSORT) method
[34] was employed to investigate the immune infiltration of
different tissues from the three datasets. This facilitated the
identification of any abundance dissimilarity of specific im-
mune cell categories. CIBERSORT has been demonstrated
as a reliable method for quantifying the presence of 22 dif-
ferent immune cell categories, including B cells, T cells,
natural killer cells, mast cells, plasma cells, dendritic cells,
neutrophils, eosinophils, and macrophages.

Statistics

R programming (https://www.r-project.org/, version
4.1.2) [35] was utilized for statistical analyses. Co-gene
identification was performed using the Ggvenn R package.
To compare two groups of continuous variables, if normally
distributed, the group t-test was conducted, otherwise, the
Mann-Whitney U test (i.e., Wilcoxon rank-sum test) was
employed. Two-tailed p values below 0.05 indicated statis-
tical significance.

Results

Identifying 326 Immune Infiltration-Related Genes in SCZ

The GEO database served as a source of an RNA ex-
pression matrix from three datasets, namely GSE17612,
GSE21138, andGSE21935. The data was normalized using
the limma package, and the resulting table is presented in
Table 1 (Ref. [19,36,37]). To demonstrate the standardiza-

http://www.gsea-msigdb.org/gsea/msigdb
https://cn.string-db.org/
https://www.r-project.org/
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Table 1. The materials of SCZ GEO data sets.
GEO datasets Platforms Sample (SCZ/CTL) Rows per platform

GSE17612 (Maycox et al. [36], 2009) GPL570 [HG-U133_Plus_2] 28/23 22,647
GSE21138 (Narayan et al. [37], 2008) GPL570 [HG-U133_Plus_2] 30/29 22,647
GSE21935 (Barnes et al. [19], 2011) GPL570 [HG-U133_Plus_2] 23/19 22,647

SCZ, schizophrenia; GEO, Gene Expression Omnibus; CTL, control.

Fig. 1. Principal component analysis (PCA) analysis and Immune infiltration-related differentially expressed genes (DEGs). (A)
PCA was conducted for the GSE17612, GSE21138, and GSE21935 gene datasets prior to normalization and batch effect adjustment. (B)
PCA was performed on the three gene expression datasets post normalization and batch effect adjustment. (C) The difference in immune
scores between SCZ and control groups was analyzed. (D) The volcano plot displays the DEGs in the high immunity and low immunity
subgroups. Red dots symbolize the up-regulated genes, green dots for down-regulated genes, and gray dots represent the genes with no
statistically differential expressions. The DEGs were identified based on a statistical threshold of adjusted p-value below 0.05 and a fold
change above 0.5. (E) A heatmap shows the DEGs within the high immunity and low immunity subgroups. The subject IDs are shown
on the x-axis, while genes with different expressions are shown on the y-axis. The genes with up-regulated expressions are reflected by
red color, while the genes with down-regulated expressions are shown by blue color.



Chengchong Li, et al. Identification of Immune-Related Gene Signature in SchizophreniaChengchong Li, et al. Identification of Immune-Related Gene Signature in SchizophreniaChengchong Li, et al. Identification of Immune-Related Gene Signature in Schizophrenia

280 Actas Esp Psiquiatr 2024;52(3):276–288. https://doi.org/10.62641/aep.v52i3.1648 | ISSN:1578-2735
© 2024 Actas Españolas de Psiquiatría.

Fig. 2. Weighted correlation network analysis. (A) The grouping of SCZ samples based on their traits is presented in a dendrogram and
heatmap. (B) The selection of the soft-thresholding power value was visualized by a plot. (C) The number of modules was determined
and the scale-free topology was checked using a histogram when β was set to 3. (D) A dendrogram of genes and their respective module
colors is displayed. Each color represents a different module. (E) The correlation between different modules and the immunophenotype
is displayed in the heatmap. (F) The profile of average gene significance and errors in the modules related to the immune system of SCZ
samples is presented. (G) The correlation between high immune phenotype and genes in the green module is displayed in a scatter plot.

tion and correction of batch effects across the three datasets,
a principal component analysis (PCA) was conducted ac-
cordingly (Fig. 1A,B).

ssGSEA was conducted to explore the role of im-
munoregulatory genes in SCZ. The results revealed a signif-
icantly elevated immune score in SCZ compared to controls
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Fig. 3. Constructing immune-related gene clusters. (A) A Venn diagram was used to show the overlapping genes between the green
module genes and DEGs regarding the above subgroups. (B) The color legend for the consistency unsupervised clustering. (C) The
consistency matrix of all datasets with k = 2. (D) A consistent cumulative profile was used to show the cumulative profile function with
various k values to obtain the best k. (E) A delta area map was utilized to show the change of delta area with different values of k. (F)
PCA was leveraged to determine the differences between the two subtypes identified by the consistent unsupervised cluster analysis. The
81 SCZ samples were categorized into cluster A and B (immune-related differentially expressed genes (IDEGs)-related clusters) on the
basis of the results of the clustering analysis.

(p = 0.03), as depicted in Fig. 1C. Subsequently, the 81 SCZ
samples were divided into high immunity and low immu-
nity subgroups based on the median of the ssGSEA score.
The corresponding DEGs were identified using adjusted p
value below 0.01 and |log2FC| above 0.5 cut-offs, resulting
in 326 DEGs as illustrated in the volcano plot (Fig. 1D).
Among these, 232 genes were upregulated and 94 genes
were downregulated in the high versus low group, as shown
in Fig. 1D,E.

Identifying 75 Genes in the Green Modules Relevant to
Immune Scores

WGCNA was selected to identify co-expressed gene
modules in the three datasets and investigate the role of
the immune response in the gene networks. The dendro-
gram and traits of all samples were illustrated (Fig. 2A).
We selected the top 5000 variance genes and constructed a
network using a soft-thresholding power of β = 3, result-

ing in a scale-free network with high connectivity (scale-
free R2 = 0.86, slope = –1.64) (Fig. 2B,C). A total of 7
modules were identified after merging similar ones, and
clustering dendrograms were presented (Fig. 2D,E). The
green module emerged with the highest Module Signifi-
cance (MS) (Fig. 2F). Additionally, the relationship be-
tween Module Membership (MM) and Gene Significance
(GS) in this module was highly significant (cor = 0.79, p =
7.8× 10−27), as shown in Fig. 2G. Therefore, the 75 genes
in the green module were selected for further analysis.

Identifying 2 Immune-Related Differentially Expressed
Genes (IDEGs)-Related Clusters

To explore the dissimilarities in immune infiltration
patterns, we identified the co-expressed genes (co-genes)
within the green module and DEGs of the aforementioned
subgroups (Fig. 3A). A total of 40 co-genes were identi-
fied, and an unsupervised cluster analysis was performed
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Fig. 4. Immune infiltration analysis of IDEG subtypes. (A) The single-sample gene set enrichment analysis (ssGSEA) was leveraged
for comparing the immune infiltration status regarding the two immune-related clusters, and the heatmap indicated that immune infiltra-
tion appeared drastically severer in cluster B compared to in cluster A. Red indicates stimulated immune cells, with blue representing
inhibited immune cells. (B) The CIBERSORT method was used for calculating the immune infiltration levels about the 22 immune cells
from SCZ patients, and the landscape of immune cell infiltration proportions was shown. It showed mast cells, T cells, and macrophages
were the most prevalent types of 22 forms of cells. (C) The 22 forms of immune cells’ interaction was illustrated. (D) The Cell-type
Identification By Estimating Relative Subsets Of RNA Transcripts (CIBERSORT) algorithm was used to compare the infiltration propor-
tion of the 22 immune cells from the two clusters related to immune system in SCZ patients. The percents of M1 macrophages, natural
killer (NK) cells, and neutrophils turned out to be drastically increased in cluster B, while the T cells CD4 naive’s proportions showed a
remarkable increase in cluster A (*p ≤ 0.05; ***p ≤ 0.001).

using these genes. The findings show that the delta area
of subtype aggregation reduced drastically and reached a
plateau when k = 2 (Fig. 3B–E). PCA indicated that the two
subtypes were distinct (Fig. 3F). Therefore, the 81 patient
samples were divided into two clusters, cluster A and B,
using consistent unsupervised cluster analyses, which were
termed as immune-related differentially expressed genes
(IDEGs)-related clusters.

The High Immune Cluster (Cluster B) Having a Higher
Degree of Immune Infiltration

To investigate the immune infiltration patterns regard-
ing the two immunoregulatory subtypes, ssGSEA was uti-
lized. The resulting heatmap showed a significant in-
crease in immune cell infiltration in cluster B compared
to cluster A, indicating that cluster B was associated with
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Fig. 5. The immune-related differentially expressed genes (IRDEGs) enrichment analysis. (A) The volcano plot displays the genes
that are differentially expressed in cluster B relative to cluster A. Red color indicates the genes with upregulation, green for genes with
downregulation, and gray for genes with no significant difference. Differentially expressed genes (DEGs) were defined as ones with an
adjusted p-value below 0.05 and fold change less than 0.75. (B) The heatmap shows the DEGs in cluster B versus cluster A. (C) The
bubble plot illustrates that the top 10 Gene Ontology (GO) terms are enriched in the IRDEGs. (D) The network profile displays the
association between the genes and the top four bioprocesses. The nodes’ colors represent the gene expressional contents, among which
red nodes reflect genes with upregulation and blue nodes for genes with downregulation. The circles’ sizes symbolize the association.
(E) The bubble plot illustrates that the top 10 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways are enriched within the
IRDEGs. (F) The network profile shows the association of the genes with the KEGG pathways. The nodes’ colors represent the gene
expressional contents, where red nodes signify genes with upregulation and blue nodes for genes with downregulation. The circles’ sizes
symbolize the association. (G) The functional similarities analysis identifies the core genes participating in the top three GO terms. The
black dots in the image represent outliers.

a high immune signal (Fig. 4A). Additionally, the study
further examined the immune infiltration regarding SCZ
using the CIBERSORT method, which revealed that mast
cells, T cells, and macrophages were the most preva-
lent immune cell types among the 22 immune cell forms
(Fig. 4B). The relationship coefficients within SCZ-related
immune cells were also calculated and found to be posi-
tively correlated (Fig. 4C). Furthermore, the proportions of
M1macrophages, resting natural killer (NK) cells, and neu-
trophils were drastically increased in SCZ patients in cluster
B relative to cluster A, while the proportions of naive CD4+
T cells were remarkably elevated in SCZ patients in cluster
A relative to cluster B (Fig. 4D). These findings suggest that
clusters A and B were associated with distinct immune cell
infiltration patterns, with the high immune cluster (cluster
B) having a higher degree of immune infiltration.

Interferon-Beta, IgG Binding, and Response to
Interferon-Gamma are Key Biological Processes Involved
in the Different Immune Gene Subgroups

To better understand the biological characteristics of
the two immune gene subgroups, 112 immune-related dif-
ferentially expressed genes (IRDEGs) between the two
clusters were identified (Fig. 5A,B). Gene Ontology (GO)
and Kyoto Encyclopedia of Genes and Genomes (KEGG)
analyses were performed to determine the enriched biopro-
cesses, molecular functions, cellular components, and path-
ways related to IRDEGs (Fig. 5C–F, Supplementary Ta-
ble 1). It was observed that IRDEGs had significant en-
richments in bioprocesses related to response to interferon-
beta and interferon-gamma, and molecular functions asso-
ciated with IgG binding. Enriched GO terms were linked
to inflammatory response, virus receptor effect, interferon
response, and exogenous protein integration. Addition-
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Fig. 6. Gene set enrichment analysis (GSEA) and Gene Set Variation Analysis (GSVA) enrichment analysis of the two immune-
related clusters. (A) GSEA showing the enriched pathways in HLLMARK set of cluster B. (B) GSEA showing the enriched pathways
in GO set of cluster B. (C) GSEA showing the top 7 enriched pathways in KEGG set of cluster B. Each line represents a particular term
in a unique color. The up-regulated genes located near the left, while the down-regulated genes located near the right. The threshold was
False Discovery Rate (FDR) q < 0.05. (D) GSVA showing the top 20 pathways enriched in the cluster B.

ally, IRDEGs showed enrichments within pathways such
as Staphylococcus aureus infection and osteoclast differ-
entiation. The latter was enriched by nine IRDEGs and
was the most remarkable pathway. In order to identify
core genes related to these processes, a functional anal-
ogy analysis was conducted using GO, revealing 11 hub-
genes closely associated with response to interferon-beta,
IgG binding, and response to interferon-gamma. These
hub genes included PLSCR1 (phospholipid scramblase 1),
FCGR1B (Putative high affinity immunoglobulin gamma
Fc receptor IB), MT2A (metallothionein 2A), IFITM1 (in-
terferon induced transmembrane protein 1), GBP1 (guany-
late binding protein 1), BST2 (bone marrow stromal cell
antigen 2), IFITM3 (interferon induced transmembrane
protein 3), GBP2 (guanylate binding protein 2), CD44
(CD44 molecule), FCER1G (Fc epsilon receptor Ig), HLA-
DRA (major histocompatibility complex, class II, DR al-
pha), FCGR2A (Fc gamma receptor IIa), IFI16 (interferon
gamma inducible protein 16), and FCGR3B (Fc gamma
receptor IIIb) (Fig. 5G, Supplementary Table 2). These
results suggest that interferon-beta, IgG binding, and re-
sponse to interferon-gamma are key biological processes
involved in the different immune gene subgroups.

Analyzing GSEA and GSVA Enrichment of the Two
Clusters Relevant to Immune System

GSEA and GSVA were conducted to analyze the en-
riched biological pathways for the two immune subtypes.
The results of GSEA using the Hallmark gene sets showed
enrichment of IL6-JAK-STAT3 signaling, interferon alpha
response, interferon gamma response, inflammatory re-
sponse, and IL2-STAT5 signaling in cluster B (Fig. 6A;
Supplementary Table 3). Furthermore, GSEA using the
GO gene sets revealed enrichment of angiogenesis, blood
vessel development, cytokine production, positive regula-
tion, and negative regulation of cytokine production, as well
as vasculature growth in cluster B (Fig. 6B; Supplemen-
tary Table 4). Additionally, GSEA using the KEGG gene
sets demonstrated enrichment of human papillomavirus in-
fection, human T-cell leukemia virus 1 infection, MAPK
signaling pathway, PI3K-AKT signaling pathway, regula-
tion of actin cytoskeleton, and human cytomegalovirus in-
fection in cluster B (Fig. 6C; Supplementary Table 5).
These results indicate that cluster B is associated with
immune-related pathways.

The GSVA outcomes revealed that immunoregulatory
genes largely impact the following pathways: “blanco melo
respiratory syncytial virus infection a594 cells up”, “re-
actome interleukin 10 signaling”, “reactome interleukin 4
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Fig. 7. Protein-protein interaction (PPI) network analyses of the IRDEGs. (A) IRDEG-encoded protein-protein interactions are
depicted in a PPI network. (B) Highly-ranked PPI hub genes. (C) A Venn diagram depicting the overlap between PPI core genes and
hub genes with analogic functions, including 11 genes. (D) Genes that are both PPI hubs and among the top 3 in GO keywords.

and interleukin 13 signaling”, “blanco melo human parain-
fluenza virus 3 infection a594 cells up”, “salvador mar-
tin pediatric tbd anti-TNF therapy non-responder post-
treatment up”, and “reactome creation of c4 and c2 activa-
tors” (Fig. 6D). These pathways showed activation within
cluster B.

Identifying 11 Hub Genes in Schizophrenia

To identify hub genes in schizophrenia, a PPI network
was constructed for the 112 differentially expressed genes
associated with SCZ (Fig. 7A). CytoHubba, a Cytoscape
plugin, was utilized to analyze the network and identify the
top 24 genes as core genes (Fig. 7B), referred to as PPI
hub genes to distinguish them from the previously identi-
fied core genes obtained through functional analogy anal-
ysis (hub genes with analogic function) in Fig. 6C. Subse-
quently, these two types of hub genes were combined us-

ing a Venn diagram to identify the 11 overlapping genes re-
lated to immune infiltration (Fig. 7C). These genes included
IFITM1, GBP1, BST2, IFITM3, GBP2, CD44, FCER1G,
HLA-DRA, FCGR2A, IFI16, and FCGR3B. The UpSet plot
displays the co-genes of the PPI network as well as the top
3 GO terms (Fig. 7D).

Discussion

SCZ is a severe and intricate mental illness. Despite
the expanded scale of SCZ research, its underlying etiol-
ogy remains elusive. With the growing proportion of stud-
ies focusing on immune function and psychiatric disorders,
inflammation and immunology have been implicated in the
pathogenesis of SCZ. Research by Cullen AE et al. [38]
demonstrated a higher prevalence of inflammatory and au-
toimmune diseases in individuals with schizophrenia, and
both SCZ patients and their families are at an increased risk
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of developing immune disorders [39]. Previous study has
suggested that immunotherapy targeting antibodies may al-
leviate schizophrenic symptoms in some cases [40]. Addi-
tionally, investigations into immune system abnormalities
in psychiatric diseases have shown that postpartum SCZ
in some women may result from disruptions in immune
response during pregnancy [41,42]. These findings sup-
port the involvement of immune responses in the develop-
ment of SCZ, yet the potential mechanism remains unclear.
Further studies are needed to expand our understanding of
immune system signatures relevant to the pathogenesis of
SCZ.

In this study, the impact of immune-related gene ex-
pression on SCZ was analyzed using ssGSEA. The median
ssGSEA score was utilized to classify the 81 SCZ samples
into high immunity and low immunity subgroups. Two hun-
dred and thirty-two genes were increased, and ninety-four
genes were decreased in the high immunity subgroup com-
pared to the low immunity subgroup. Using the same un-
supervised cluster analyses, the 81 patient samples were
then divided into clusters A and B. Differences in the ex-
tent of genome sequence across clusters were observed.
There were 112 genes whose expression levels varied sig-
nificantly between the two categories of immune genes.
PLSCR1, FCGR1B,MT2A, IFITM1,GBP1, BST2, IFITM3,
GBP2, CD44, FCER1G, HLA-DRA, FCGR2A, IFI16, and
FCGR3B are all tightly associated with the response to
interferon-beta, IgG binding, and response to interferon-
gamma, as indicated by GO and KEGG enrichment studies.
Finally, the PPI network was used to focus on eight SCZ
hub genes involved in immune infiltration. These genes
include IFITM1, GBP1, BST2, IFITM3, GBP2, CD44,
FCER1G, HLA-DRA, FCGR2A, IFI16, and FCGR3B.

Immune response defects have been implicated in
the onset of SCZ. In this study, two hub genes, IFITM1
and IFITM3, were discovered. Genes belonging to the
interferon-inducible transmembrane (Ifitm/Fragilis) fam-
ily produce similar small proteins primarily found in the
plasma and endolysosomal membranes [43–45]. Previ-
ous studies have shown complex, field-specific alterations
in the prefrontal cortex regarding the transcripts of the
IFITM family and SERPINA3 [46–48]. These findings
align closely with the disorders observed in the brains of
SCZ patients.

Conclusions

In summary, this study identified 24 potential
immune-related genes in SCZ through bioinformatics anal-
ysis. Among them, 11 hub genes, including IFITM1,

GBP1, BST2, IFITM3,GBP2, CD44, FCER1G,HLA-DRA,
FCGR2A, IFI16, and FCGR3B, were identified by con-
structing PPI networks. Future research is warranted to
comprehensively understand the significance of immuno-
logical responses as potential clinical indicators or thera-
peutic targets, as well as the regulatory functions they play
in SCZ.
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