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Abstract

Background: The number of individuals diagnosed
with Alzheimer’s disease (AD) has increased, and it is esti-
mated to continue rising in the coming years. The diagno-
sis of this disease is challenging due to variations in onset
and course, its diverse clinical manifestations, and the indi-
cations for measuring deposit biomarkers. Hence, there is
a need to develop more precise and less invasive diagnos-
tic tools. Multiple studies have considered using electroen-
cephalography (EEG) entropy measures as an indicator of
the onset and course of AD. Entropy is deemed suitable as a
potential indicator based on the discovery that variations in
its complexity can be associated with specific pathologies
such as AD.

Methodology: Following PRISMA guidelines, a liter-
ature search was conducted in 4 scientific databases, and 40
articles were analyzed after discarding and filtering.

Results: There is a diversity in entropy measures;
however, Sample Entropy (SampEn) and Multiscale En-
tropy (MSE) are the most widely used (21/40). In general,
it is found that when comparing patients with controls, pa-
tients exhibit lower entropy (20/40) in various areas. Find-
ings of correlation with the level of cognitive decline are
less consistent, and with neuropsychiatric symptoms (2/40)
or treatment response less explored (2/40), although most
studies show lower entropy with greater severity. Machine
learning-based studies show good discrimination capacity.

Conclusions: There is significant difficulty in com-
paring multiple studies due to their heterogeneity; however,
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changes in Multiscale Entropy (MSE) scales or a decrease
in entropy levels are considered useful for determining the
presence of AD and measuring its severity.
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Introduction

As of 2021, it was estimated that approximately
55 million individuals were living with dementia.
Among them, between 60 and 70% were diagnosed with
Alzheimer’s disease (AD), making it the most common
form of dementia. It is estimated that by 2030, the number
of individuals diagnosed with dementia will increase to 78
million and by 2050 to 152 million [1]. The annual costs
of the disease in the United States were approximately
1 trillion dollars in 2019, a figure expected to double by
2030 [1,2]. Therefore, AD represents a significant public
health problem, underscoring the need to reach a consensus
for the development of biological and neurophysiological
markers that support its diagnosis.

The international classification systems, International
Classification of Diseases 11th Revision (ICD-11) [3] and
Diagnostic and Statistical Manual of Mental Disorders 5th
Edition (DSM-5) [4], have the highest level of dissemina-
tion worldwide [5,6]. Additionally, more specific criteria
proposed by the National Institute on Aging-Alzheimer’s
Association (NIA-AA) have been designed for clinical
practice [7] and are endorsed by various management
guidelines [8–10]. Other diagnostic criteria are exclusively
used in clinical research [11,12] and involve biomarkers
such as β-amyloid deposits, pathological tau proteins, and
the presence of neurodegeneration.
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Table 1. Main complexity measures used in Alzheimer’s disease studies with EEG.
Complexity measure Abbreviation  Description

Approximate Entropy ApEn  Measures the regularity of the data by examining similar epochs of time-series data.
Higher values correspond to greater complexity in the data [28].

Fuzzy Entropy  FuzzyEn  Determines a fuzzy measure of similarity between two vectors based on their shapes [28].
Sample Entropy  SampEn  An improved algorithm over ApEn that avoids the bias caused by self-matching [29].
Permutation Entropy  PE  A method that computes entropy based on permutation patterns. Suitable for analyzing

arbitrary real-world data, especially chaotic time series [27].
Multiscale Entropy MSE  Provides a sample entropy estimation over multiple time scales [31].
Spectral Entropy SpectEn  A measure of unpredictability and disorder associated with the spectrum of a signal.

Higher values indicate greater complexity [26].
Shannon Entropy ShE  Quantifies the diversity, uncertainty, or randomness of an equilibrium system [30].
Tsallis Entropy TsE  Explores the properties of a probability distribution among non-equilibrium systems [19].
Transfer Entropy TE  A theoretical information measure that quantifies statistical coherence between evolving

systems in time [25].
Correlation Dimension D2  A measure of the independent variables is required to define the complexity of the dynam-

ics precisely [19].
Fractal Dimension  FD  Measures the change in signal amplitude as the signal is sampled at successively longer

intervals [26].
Lempel-Ziv Complexity LZC  Reconstructs the original time series into a binary sequence [19].
Hurst Exponent HE  Used primarily to measure the fractal dimension of a time series [19].
Lyapunov Exponent LLE  A metric for assessing the randomness of finite sequences [19].

Note. Source: Own elaboration. EEG, electroencephalography.

AD is characterized by physiopathological and clin-
ical heterogeneity, particularly in late-onset presentations,
leading to diagnostic challenges. In patients clinically eval-
uated andmonitored over the years, purely clinical diagnos-
tic criteria exhibit diagnostic accuracy with a sensitivity and
specificity ranging between 70 and 80% when compared
to neuropathology [13]. Hence, there is a need to develop
more precise, accessible, and non-invasive diagnostic and
screening tools for early identification in at-risk populations
[14]. For this purpose, various modalities for evaluating the
central nervous system (CNS), such as electroencephalog-
raphy (EEG), have been employed.

EEG involves monitoring the electric fields generated
in the brain through electrodes placed on the scalp. These
fields result from the activity of pyramidal neurons in the
cerebral cortex, where the synchronous activity of groups
of neurons functions as micro-dipoles, allowing EEG to
record activity. EEG’s advantages as a diagnostic tool in-
clude its ability to be easily conducted, its temporal reso-
lution in milliseconds, its non-invasive nature, and its cost-
effectiveness, which may facilitate widespread use. More-
over, automated processing methods developed in recent
decades have enhanced data robustness and enhanced eval-
uation [14,15].

Prior studies have shown EEG’s utility for early
screening of AD by detecting: (1) signal slowing (charac-

terized by an increase in the energy of low-frequency sig-
nals and a decrease in the energy of high frequencies), (2)
changes in synchrony (a feature of neuronal connectivity),
and (3) reduced complexity (more regular patterns in AD
patients). The latter parameter can be evaluated by entropy
analysis [14].

Interactions among physiological variables that enable
adaptation processes, alongside mechanisms that regulate
them, are typically nonlinear and susceptible to be ana-
lyzed under chaos theory-based approaches. These pro-
cesses are known to be complex. From this perspective,
it is assumed that: (1) A system’s complexity reflects its
ability to adapt to changing environments; (2) Physiologi-
cal processes operate across multiple temporal and spatial
scales, and its complexity is multiscale; (3) In aging or dis-
ease states, adaptability diminishes, thus reducing the sys-
tem’s complexity [16,17].

In time series analyses, entropy is defined as a com-
plexity measure that studies system organization [18,19]. If
a system is more predictable, it will produce signals with
lower entropy measures. Despite the existence of a cer-
tain degree of stability in organisms, there must be room
for variations that allow them to adapt adequately to en-
vironmental demands [19,20]. From a biological stand-
point, it is generally accepted that healthier systems exhibit
greater complexity and, consequently, higher entropy lev-
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Table 2. Search terms, descriptors, and search equations.
MeSh  Unrestricted  DeCS 

Terms
· Alzheimer Disease • Alzheimer • Alzheimer
· Entropy • Entropy • Entropy
· Signal Processing, Computer-Assisted

Search Strategies
-Selected MeSh Terms: Alzheimer’s disease, Entropy, Computer-Assisted, Signal processing
-Unrestricted: Alzheimer, Entropy

Database   Scopus PubMed Lilacs SciElo
Final Search Equation alzheimer AND entropy AND

(EXCLUDE (DOCTYPE, “cp” ) )
AND (LIMIT-TO (DOCTYPE,
“ar” ) ) AND ( LIMIT-TO
(LANGUAGE, “English” ) )

(Alzheimer Dis-
ease [MeSH])
AND (entropy)

(“alzheimer”)
AND

(“entropy”)
AND

(db:(“LILACS”))

(“alzheimer”)
AND

(“entropy”)
 Filters applied:
English, spanish.

Results 544 166 1 (language
Portuguese) 

1 (Portuguese), 1
(Spanish).

The bold text indicates the types of terms or the databases in which the search was conducted.

els [17,21]. These measurements vary depending on the
systems and the algorithms used, so both increases and de-
creases in entropy have been reported for different patholo-
gies [14,22,23].

The various measures used to quantify the complex-
ity of records and images include fractal dimension, corre-
lation dimension, Lempel-Ziv complexity, Hurst exponent,
Lyapunov exponent, and entropy-based measures [24]. The
latter are the most commonly used, as they require less data
for analysis, are less sensitive to signal interference, and can
be processed using simple algorithms [19]. Table 1 (Ref.
[19,25–31]) summarizes the main measures used.

Therefore, this paper reviews the evidence regarding
EEG entropy measures for evaluating AD patients. Our
purpose is to contribute to the understanding of these tools’
potential as biomarkers and outline their limitations.

Methodology

In April 2024, a literature search was conducted fol-
lowing the guidelines of the Preferred Reporting Items
for Systematic Reviews and Meta-Analyses Protocols [32].
Documents published between 2000 and 2023 were in-
cluded. The databases searched were PubMed, Scopus,
Scielo, and Lilacs. An exhaustive search was conducted
using the main terms and MeSH/DeCs terms: Entropy,
Alzheimer’s Disease, Signal Processing, and Computer-
Assisted, as well as free search terms for the equation with
the highest sensitivity (Table 2).

After combining the search terms by applying filters
by language (including Spanish and English), type of pub-
lication (original articles only) and areas of knowledge (ex-
cluding those other than biosciences), 713 articles were
obtained. Subsequently, duplicate articles were removed
using the bibliographic manager. The selection criteria
considered were population (patients with Alzheimer’s dis-
ease), measurement (entropy in EEG records), and results
(clinical evaluation), adapting the population, intervention,
comparison and outcomes (PICOT) criteria [33]. Four re-
searchers independently determined that each of the studies
met the selection criteria. Studies on populations with other
mental disorders orMild Cognitive Impairment (MCI) were
excluded. Furthermore, studies that calculated complexity
exclusively withmeasures different from those based on en-
tropy were also excluded (Fig. 1).

Results

A total of 40 articles (Table 3, Ref. [20,25–28,30,31,
34–66]) published between 2000 and 2023 using entropy
measures were included (Fig. 2). Some studies utilized
solely entropy-based measures [20,25,34–36], while others
combined entropy analysis with additional complexitymea-
sures [37–39], spectral measures [26,38], time-frequency
analysis measures [40], and relative power measures [41].

Studies that included AD patients matched with
healthy controls (HC) [26,27,34,36–38,42–46,48–50,60,
61,66] revealed lower entropy values, except for one study
that used Spectral Entropy (SpectEn) [44]. This decrease
in entropy levels in AD patients was observed in frontal
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Fig. 1. Search tree diagram. Note. Source: Own elaboration. MCI, Mild Cognitive Impairment.

[27,46], temporal [47,48], parietal [42,43,48–51], central
[27], and occipital [28,42,43,49,50] areas. A recent study
showed that the best differentiation between HC and prob-
able AD was obtained using delta waves [52].

Another study evaluated the potential of multiscale
fluctuation dispersion entropy (MFDE) in awake and sleep
EEG as a biomarker for AD in its early stages. The re-
sults suggested that the slow-to-fast-activity ratio of entropy
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Fig. 2. Entropy-based measures used in the evaluated studies. Note. Source: Own elaboration. ApEn, Approximate Entropy;
SampEn, Sample Entropy; MSE, Multiscale Entropy; SpectEn, Spectral Entropy; PE, Permutation Entropy; FuzzyEn, Fuzzy Entropy;
TsE, Tsallis Entropy; SE, Shannon Entropy.

(SFAR-entropy) on rapid eyemovement (REM) sleep could
differentiate dementia fromMCI andHC, especially in tem-
poral and occipital regions. Furthermore, higher SFAR-
entropy during REM sleep correlated with worse perfor-
mance on the Montreal Cognitive Assessment, suggesting
a link between increased SFAR-entropy and more severe
cognitive impairment [53].

Multiscale Entropy (MSE) analysis divides the signal
into data sets of different sizes. Scale 1 corresponds to the
entropy analysis using the original signal, while a scale of
10 corresponds to the entropy analysis of the result of aver-
aging 10 contiguous data points. Short-time scales in MSE
are thus more susceptible to rapid or abrupt signal changes.
As the scale increases, rapid changes are averaged out, and
entropy becomes more sensitive to changes produced on
longer time scales. In the case of EEG, entropy in short
scales is more susceptible to high-frequency signals, while
longer scales are more sensitive to low-frequency signals.
Several studies have found a decrease in short time scales
and an increase in long time scales in frontal, temporal,
central, and occipital areas in patients with AD [29,43,54–
56]. This means there is a decrease in the entropy of high-
frequency signals (alpha and beta bands) and an increase
in the entropy of low-frequency band signals (theta and
delta). However, one of the studies did not show a cor-
relation between entropy and the level of cognitive decline
[43], and another only found a correlation between them in
short timescales [56].

A recent study evaluated brain response to musical
stimulation in AD patients with different degrees of demen-
tia by employing Sample Entropy (SampEn), Permutation
Entropy (PE), and Lempel-Ziv Complexity (LZC). Accord-
ing to the results, mild to moderate AD patients displayed
higher brain entropy than severe AD patients during and af-
ter the stimulus compared to pre-stimulus [57]. On the other
hand, two studies that employed Shannon entropy (SE) and
Tsallis entropy (TsE) yielded discordant results. One study
found that the level of cognitive decline in frontal and tem-
poral areas is associated with an increase in entropy [55],
while the second reported a decrease [30].

The association between entropy changes and emo-
tional and behavioral symptoms in AD was reported in two
studies that calculating MSE [29,31] and applying the Neu-
ropsychiatric Inventory (NPI). One study showed a correla-
tion between lower MSE values on short scales and the do-
mains of depression, anxiety, aberrant behavior, and sleep
changes [29]. The other study suggested this exact corre-
lation for the domains of irritability, aberrant behavior, and
sleep changes [31]. The concordant findings between the
studies were for the domains of aberrant behavior and sleep
changes.

Machine learning-based approaches have been suc-
cessfully applied to discriminate AD patients from HC,
MCI subjects, and individuals with Subjective Cognitive
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Table 3. Articles included in the review.
N° Year Objective N Entropy measures Complexity analysis in the patient group

1 Abásolo et al. [50], 2005 Evaluate the use of entropy as a diagnostic
biomarker for AD.

Patients = 10 Controls = 8 ApEn Significantly decreased ApEn values were found in
occipital and parietal areas.

2 Abásolo et al. [42], 2006 Evaluate the use of entropy as a diagnostic
biomarker for AD.

Patients = 11 Controls =
11

SampEn, SpectEn Decrease in SampEn in occipital and parietal areas.
No differences in SpectEn were found.

3 Abásolo et al. [49], 2008 Evaluate the use of entropy as a diagnostic
biomarker for AD.

Patients = 11 ApEn Decrease in ApEn in occipital and parietal areas.
Controls = 11

4 Abazid et al. [58], 2021 To use EpEn to brain network assessment and
demonstrate its effectiveness with different
graph parameters for AD diagnosis.

Patients AD = 28 EpEn Effectiveness of Support Vector Machine (SVM)
algorithm for analyzing the brain network in
patients with different stages of cognitive dysfun-
ction. Statistical modeling of EEG signals with
EpEn allows a better differentiation between SCC,
MCI and AD stages.

Patients MCI = 28
Patients SCC = 22

5 Al-Nuaimi et al. [45], 2015 Evaluate the use of entropy as a diagnostic
biomarker for AD.

Patients = 20 Controls =
32

TsE Statistically significant decrease in TsE in AD pa-
tients.

6 Amezquita-Sanchez et al. [40], 2021 A new EEG-based methodology is presented
to differentiate MCI, AD and healthy subjects
using DWT, DEI, a recently proposed nonlin-
ear measurement by Rostaghi and Azami, and a
fuzzy logic-based classification algorithm.

AD Patients = 45 MCI
Patients = 45 Controls =

45

IDE The EEG signals measured in patients with mild
cognitive impairment, and AD does not present
significant visual differences compared to those
obtained in healthy subjects.

DWT

7 Ando et al. [46], 2021 Understanding the alteration of EEG dynamics
in AD.

AD Patients = 16 HC = 18 MSE MSE and MF analyses showed reduced EEG
complexity in AD patients. The classification
accuracy is better when combining MSE and MF
analyses than when applying each individually.

MF

8 Azami et al. [53], 2023 To evaluate the potential of multiscale fluctua-
tion dispersion entropy analysis of EEG during
sleep as a physiological biomarker for the early
clinical stages of Alzheimer’s disease.

Patients MCI-AD = 23 SFAR-entropy The average SFAR-entropy across the entire brain
during REM sleep significantly differentiated in-
dividuals with dementia—AD from those with
mild cognitive impairment probable AD and HC.
Additionally, brain regional differences in SFAR-
entropy during REM sleep were more pronounced
in the temporal and occipital regions for dementia.
During REM sleep, SFAR-entropy in the occipital
region was significantly correlated with lower
MoCA scores.

Patients = 19
Controls = 35
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Table 3. Continued.
N° Year Objective N Entropy measures Complexity analysis in the patient group

9 Cao et al. [36], 2015 Using entropy as a biomarker in the EEG and
machine learning software and its accuracy to
distinguish HC from patients.

Patients = 20 Controls =
20

ApEn, SampEn,
fApEn

The four entropies were statistically decreased in
AD patients in temporal and parietal areas; the soft-
ware could distinguish the traces between the two
groups with the four entropies. However, fSampEn
had the highest accuracy at 88.1%.

fSampEn

10 Coronel et al. [55], 2017 Using EEG complexity measures as a
biomarker of AD severity.

Patients = 79 SE, Statistically significant decrease in SpecEn and
MSE in frontal and temporal areas and these mea-
sures were correlated with lower MMSE scores.
The increase in SE and TsE was correlated with
lower MMSE scores.

TsE, SpectEn, MSE

11 Das & Puthankattil [61], 2022 To analyze the relation between functional con-
nectivity and complexity by modeling the MCI-
AD condition with the help of the Kuramoto
model.

Patients = 13 FDispEn In real EEG signals, FDispEn values were signifi-
cantly lower in the anterior and central regions for
patients with MCI-AD. No significant differences
in FDispEn were reported in simulated signals from
patients compared to controls.

Controls = 15 LZC
HFD

The simulation comparison showed a tendency to-
ward reduced FDispEn in the central and posterior
regions for cases with impaired connectivity.

12 Deng et al. [27], 2015 Evaluate the use of entropy as a diagnostic
biomarker for AD.

Patients = 14 Controls =
14

WPE Statistically significant decrease in PE and WPE in
all areas of the theta band, frontal and occipital in
the delta band, along with the frontal and central in
the beta band.

13 Deng et al. [47], 2017 Compare the advantage of multi-scale weighted
permutation entropy (MMSWPE) over multi-
scale permutation entropy (MMSPE).

Patients = 14 WPE, PE The efficacy of MMSWPE is validated by simu-
lated and experimental signals. The simulation re-
sults demonstrate that MMSWPE retains the ad-
vantages of WPE and the multiscale multivariate
method and can distinguish the system with dif-
ferent complexity, but MMSPE works unsatisfac-
torily.

Controls = 14

14 Escudero et al. [43], 2006 Use of entropy as a diagnostic EEG biomarker
and its relationship to the level of cognitive im-
pairment.

Patients = 11 Controls =
11

MSE Significant decreases inMSE at short time scales in
frontopolar, frontal, and posterior regions. There
was no correlation between MMSE scores and
MSE at long time scales.
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Table 3. Continued.
N° Year Objective N Entropy measures Complexity analysis in the patient group

15 Fan et al. [31], 2018 Characterize the functional brain activities at
different time scales that best discriminate the
severity levels of AD groups from normal con-
trols in terms of EEG complexity.

Patients = 108 Controls =
15

MSE A classification accuracy of approximately 80%
was found between severe AD cohorts and normal
controls. In the long run, the complexity of EEG
signals decreases with the severity of AD.

Profile the topographic map of EEG biomark-
ers for various AD severities and investigate the
multivariate correlation patterns with cognitive
dysfunctions.

16 Fide et al. [66], 2023 To evaluate the level of complexity differenti-
ation driven by medication status and the rela-
tionship between the complexity levels and the
global cognitive status of the participants.

Patients AD de novo = 26 PE AD participants had reduced total PE values.
Patients with cholinergic

therapy = 24
Patients with combined

therapy = 20
Controls =27

17 Garn et al. [30], 2015 To investigate which quantitative electroencep-
halographic marker or combination of markers
correlates best with the severity of AD, as me-
asured by the MMSE.

Patients with probable AD
= 79

TsE, ShE The data indicates that specific quantitative elec-
troencephalogram (QEEG) markers related to
slowing, synchrony, and complexity are closely as-
sociated with the severity of AD in patients with
MMSE scores between 15 and 26 points.

Patients with possible AD
= 39

18 Houmani et al. [35], 2018 (I) Develop a method to automatically discrim-
inate patients with possible AD from patients
with SCC.

SCC Patients = 22 AD
Patients = 49 MCI

Patients = 58 Patients with
other pathologies = 40

EpEn, BM The study reveals that Alzheimer’s disease induces
a reduction in the complexity of the EEG and an in-
crease in its synchrony in the theta band compared
to patients with MCI, who are considered in this
work as control subjects.

(II) Automatically discriminate possible ADpa-
tients fromMCI patients andMCI patients from
other pathologies.

19 Hsu et al. [56], 2020 Test the performance of ALD to differentiate
patients with moderate to severe AD from
healthy subjects.

Mild AD Patients = 69 MSE The use of only a few MSE features as input to
ALD provides high classification performance in
distinguishing healthy subjects from AD patients.

Mod-Sev AD Patients =
15 Controls = 15

ALD

20 Labate et al. [44], 2013 Use of entropy as a biomarker in EEG in AD
and MCI patients.

Not specified PE, SampEn Multiscale multivariate PE entropy can distinguish
between subjects from the three categories in all
brain areas and across all scales. SampEn is able
to distinguish AD records from HC but has incon-
sistent results in MCI patients.
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Table 3. Continued.
N° Year Objective N Entropy measures Complexity analysis in the patient group

21 Maturana et al. [20], 2019 Determine the relationship between EEG signal
complexity and degree of cognitive impairment
among five groups of subjects with different
severity of AD.

MCI Patients = 51 MSE A high correlation between AD severity and analy-
sis in MSE and RMSSE. Combining both measures
can achieve better values.

Mild AD Patients = 51 RMSSE
Moderate AD Patients =
50 Severe AD Patients =

50 Controls = 51
22 McBride et al. [25], 2015 Evaluate the diagnostic utility of different ma-

chine learning software using spectral meth-
ods and complexity measures to distinguish be-
tween AD, mild cognitive impairment, and HC.

AD Patients = 15 MCI
Patients = 16 Controls =

15

TE Changes in transfer entropy in AD and MCI pa-
tients performed well for the algorithm to discrim-
inate between groups. For the MCI vs. HC group,
the records had an accuracy between 87.1% and
93.6%; for the AD vs. HC group, the records had
an accuracy between 87.5% and 93.8%; and for the
AD vs. MCI group, the records had an accuracy
between 81.8% and 90.9%.

23 McBride et al. [38], 2014 Evaluate the diagnostic utility of different ma-
chine learning software using spectral meth-
ods and complexity measures to distinguish be-
tween AD, mild cognitive impairment, and HC.

AD Patients = 15 MCI
Patients = 16 Controls =

15

SampEn, SpectEn Changes in spectral measures and decreased com-
plexity in AD and MCI patients performed well for
the algorithm to discriminate between groups. For
the MCI vs. HC group, the records had an accu-
racy between 83.9% and 96.8%; for the AD vs. HC
group, the records had an accuracy between 71.9%
and 96.9%; and for the AD vs. MCI group, the
records had an accuracy between 87.9% and 90.9%.

24 Mizuno et al. [54], 2010 Use of entropy as a diagnostic biomarker and its
relationship with level of cognitive impairment.

Patients = 15 Controls =
18

MSE Statistically significant decrease in MSE at short
time scales in frontal regions in all AD patients and
a significant increase in MSE at long time scales
globally in brain regions for severe AD patients;
this increase correlated with measures of cognitive
impairment.

25 Nobukawa et al. [34], 2020 Evaluate functional connectivity and complex-
ity measures in the EEG of AD patients using
machine learning software and its accuracy to
distinguish HC from patients.

Patients = 16 Controls =
18

MSE There was a significant decrease in MSE at short
time scales in frontal, temporal, and parietal areas.
There was an increase in MSE at long time scales,
but this was not significant. The software distin-
guished patients from controls based on functional
connectivity and entropy with an accuracy of 100%
and 73.5%, respectively.
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Table 3. Continued.
N° Year Objective N Entropy measures Complexity analysis in the patient group

26 Perez-Valero et al. [64], 2022 To Evaluate the potential of a fully self-driven
approach for multiclass discrimination of
Alzheimer’s disease based on a commercial
EEG acquisition device and automated proce-
ssing.

Patients = 12 SE There is no specific mention of entropy analysis.
Controls = 9

27 Polat [62], 2022 To evaluate a new approach based on the ‘com-
plextrogram’ used to represent EEG signals in
a way that enhances the performance of deep
neural networks for the automatic diagnosis of
Alzheimer’s disease using EEG data.

Patients = 24 PeEn For beta oscillations, the PeEn complexity distribu-
tions showed greater variance in AD.Controls = 24

28 Puri et al. [63], 2022 To evaluate and develop a robust and efficient
method for the early detection of Alzheimer’s
disease using EEG signals, which could help
delay neuronal degeneration.

Patients = 12 ShE There is no specific mention of entropy analysis.
Controls = 11 TsE

ReEn

29 Puri et al. [59], 2023 To evaluate the potential of a dual decomposi-
tion technique that combines DWT and VMD
with multiscale permutation entropies (ShE,
TsE, and ReEn) to detect AD.

Patients AD = 59 ShE Three different entropy features, ShE, TsE, and
ReEn, were calculated for both binary and three-
way classifications. All three features exhibit high
discriminative capability.

Patients MCI = 7 TsE
Controls = 102 ReEn

30 Ruiz-Gómez et al. [37], 2018 Evaluate the diagnostic utility of different ma-
chine learning software using spectral methods
and complexity measures to distinguish betw-
een AD, mild cognitive impairment, and HC.

AD Patients = 37 MCI
Patients = 37

SampEn, FuzzyEn,
SpectEn

AD patients had significantly reduced values of all
complexity measures compared to HC, and MCI
patients showed intermediate values between the
other two groups. The algorithm accurately distin-
guished HC from all of 78.43% and AD from all of
76.47%.

Controls = 37

31 Santos Toural et al. [41], 2021 Evaluate the performance of a method for
simultaneous classification between healthy,
MCI, and AD using EEG signals.

MCI Patients = 9 AD
Patients = 15

SampEn The results suggest that the Wavelet entropy has the
best features for use in a Healthy-MCI-AD classifi-
er for sample and permutation entropies.

PE
HC = 17 WT

MSE
MF

32 Şeker et al. [60], 2021 To develop a 3-way diagnostic classification us-
ing EEG complexity in detecting MCI/AD in
clinical practice.

MCI Patients = 85 AD
Patients = 85

PE The distribution of the measured PE shows that
EEG complexity is lower in the AD group and
higher in the control group. The MCI group is
observed as an intermediate form due to heteroge-
neous values. Classification of Controls from both
patient groups is best achieved. The eyes open state
increases the discrimination of MCI and AD.

HC = 85
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Table 3. Continued.
N° Year Objective N Entropy measures Complexity analysis in the patient group

33 Sharma et al. [39], 2019 To investigate whether selected EEG and cogni-
tive biomarkers can classify mild cognitive im-
pairment (MCI), dementia, and healthy subjects
using a support vector machine classifier in four
scenarios: eyes closed, eyes open, finger tap-
ping test, and continuous performance test.

MCI Patients = 16 AD
Patients = 15

SpectEn Good sensitivity and specificity were found for
differentiating between AD patients and controls,
MCI and AD patients, and between AD and MCI
patients, mainly using the finger tapping and con-
tinuous performance tests analyzed by combining
various measures. In all groups, SpectEn was
present.

HFD
Controls = 13 DSP

Obliquity
K
SK

Spectral asymmetry
FCS

34 Simons et al. [28], 2015 Demonstrate that QSE can provide more robust
entropy estimates than SampEn.

AD Patients = 11 Controls
= 11

SampEn The QSE method is more robust than SampEn, on
which it is based. It can highlight differences in AD
patients and controls for a variety of input param-
eters beyond what is currently accepted with Sam-
pEn or ApEn.

ApEn
QSE
KSE

35 Simons et al. [48], 2018 Evaluate FuzzyEn to identify differences be-
tween AD patient signals vs. Healthy.

AD Patients = 11 Controls
= 11

ApEn AD patients had significantly lower FuzzyEn val-
ues than control subjects and had higher diagnostic
accuracy than ApEn and SampEn.

SampEn
FuzzyEn

36 Staudinger & Polikar [26], 2011 Use of spectral features and complexity mea-
sures of signals as biomarkers in EEG through
the use of machine learning software.

Patients = 79 Controls =
82

HFD There was a significant decrease in Higuchi frac-
tal dimension and SpectEn in frontal and temporal
lobes. The use of the above features resulted in a
diagnostic accuracy of 78% in distinguishing be-
tween patients and controls.

SpectEn

37 Tsai et al. [65], 2015 Test whether some features of the MSE analysis
of EEG data can be associated with the efficacy
of AChE inhibitor therapy in AD patients.

AD Patients = 17 MSE MSE analysis of EEG recordings can show both
short—and long-term features and provides a po-
tential tool for predicting the efficacy of AChE in-
hibitors in AD, mainly at scales of 6–20.

SampEn

38 Vicchietti et al. [52], 2023 To evaluate the automatic detection of Alzheim-
er’s disease based on six methods commonly
used in the literature, C, F, Q, E, D, and I, accor-
ding to the corresponding p values and AUC’s.

Patients = 160 QE There is no specific mention of entropy analysis.
Controls = 24
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Table 3. Continued.
N° Year Objective N Entropy measures Complexity analysis in the patient group

39 Wang et al. [51], 2019 Detect the differences between healthy subjects
and AD patients, combining SampEn and the
surrogate data method.

AD Patients = 14 SampEn There were significant differences between healthy
subjects and AD patients. Higher SampEn was sig-
nificant in healthy subjects, mainly in c3, f3, o2,
and p4 recordings, and in surrogate data, it was sig-
nificant in c3 and o2.

Controls = 20

40 Wu et al. [57], 2022 To evaluate whether there are differences in
brain response to musical stimulation in AD pa-
tients with different degrees of dementia, which
could provide a theoretical basis for music ther-
apy in Alzheimer’s disease.

Patients with mild to
moderate AD = 17

SampEn Entropy values were higher during and after stimu-
lus in patients with mild to moderate AD and lower
in patients with severe AD.

PmEn
Patients with severe AD =

16
LZC

Controls = 16

Note. Source: Own elaboration. AD, Alzheimer’s disease; EEG, Electroencephalography; MMSE, Mini-Mental State Examination; SpectEn, Spectral Entropy; ApEn, Approximate Entropy;
HFD, Higuchi Fractal Dimension; MF, Multifractal Entropy; MSE, Multiscale Entropy; fApEn, Fuzzy Approximate Entropy; SampEn, Sample Entropy; fSampEn, Fixed Sample Entropy;
TsE, Tsallis Entropy; FuzzyEn, Fuzzy Entropy; PmEn/PeEn/PE, Permutation Entropy; WPE, Weighted Permutation Entropy; ShE/SE, Shannon Entropy; RMSSE, Refined Multiscale Spectral
Entropy; EpEn, Epoch-Based Entropy; LZC, Lempel-Ziv Complexity; ReEn, Rényi Entropy; Q, Quadratic Entropy; QSE, Quadratic Sample Entropy; MCI, Mild Cognitive Impairment; SCC,
Subjective Cognitive Complaint; TE, Transfer Entropy; DSP, Power Spectral Density; K, Kurtosis; SK, Spectral Kurtosis; FCS, Spectral Crest Factor; DWT, Discrete Wavelet Transform; IDE,
Dispersion Entropy Index; WT, Wavelet Transform; KSE, Kolmogorov-Sinai Entropy; AChE, Acetylcholinesterase; BM, Bump Model; SFAR-entropy, slow-to-fast-activity ratio of entropy;
FDispEn, Fluctuation-based Dispersion Entropy; C, Wavelet coherence; F, Fractal dimension; E, Wavelet energy; I, Visibility graphs; D, Quantile graphs; AUC, area under the curve; VMD,
Variational mode decomposition; HC, healthy controls; DispEn, dispersion entropy; QE, quadratic entropy.
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Complaint (SCC) (Table 4, Ref. [20,25,26,34–40,58,59,
61–64]). These studies have also found significantly lower
entropy values in AD than in HC and a high discriminative
capability [20,25,36,37,40,58,59,62,63]. Some studies re-
vealed that MCI patients have intermediate entropy values
betweenADpatients and those inHC [37,60]. Furthermore,
one study reported significantly lower entropy in anterior
and central regions in patients with MCI-AD [61].

Among the machine learning tools, there is Lin-
ear Discriminant Analysis (LDA), Quadratic Discrimi-
nant Analysis (QDA), Multilayer Perceptron (MLP), the
Fuzzy Logic Classifier (FLC), time-frequency complexity
maps (complextrogram) [62], algorithms based on Support
Vector Machines (SVM), which are the most frequently
used. Sensitivity values for diagnosis have been found be-
tween 64.7%–100%, specificity 64.7%–100%, and accu-
racy 71.9%–96% (Table 4). However, there are some limi-
tations in these studies, as the use of EEG signals captured
from all channels increases the computational complexity
and data redundancy [63]. The wide range of values could
be influenced by the great heterogeneity in the studies re-
garding the type of measures (or a combination thereof), the
type of patients (with MCI or Subjective Cognitive Com-
plaint (SCC)), and the algorithm used. These characteristics
make it difficult to compare studies directly [37,60].

Finally, a recent study using a fully self-driven ma-
chine learning approach based on a portable EEG success-
fully discriminated AD patients from MCI patients [64].

Regarding entropy as a predictor of response to
cholinesterase inhibitor treatment, a study is available with
a limited sample of AD patients treated with donepezil for
12 months. The Mini-Mental State Examination (MMSE)
and associated characteristics were calculated in the partic-
ipants, including the slopes for 1–5 time scales and 6–20
scales [65]. Based on MMSE scores, patients were clas-
sified as responders and non-responders, the former were
those whose scores were equal to or greater than their ini-
tial score one year after treatment; the latter were those
who obtained lower scores. It was found that entropy dis-
played a more pronounced decrease in non-responding pa-
tients on the 6–20 scale. Another study found that acetyl-
cholinesterase inhibitor (AChE-I) treatment was superior to
dual therapy (AChE-I + memantine) in its effect of increas-
ing cognitive scores and normalizing EEG complexity lev-
els [66].

Discussion

The present work explores the contribution of entropy-
based EEG measures to the assessment of AD patients. A
wide heterogeneity was found in the reviewed studies, both
in the methodology and the entropy-based measures used;
MSE is one of the most frequently used. A consistent find-
ing suggest reduced entropy values in patients compared to
controls. In addition, decreased levels of entropy are as-
sociated with a greater level of cognitive decline, as well
as with the presence of behavioral symptoms. This reduc-
tion in EEG complexity is consistent with the perspective
that the neuropathological alterations of AD generate losses
of effective brain connectivity, thus creating a disconnec-
tion of afferent and efferent pathways between brain areas
[67,68].

Entropy as a Discriminator of Disease and Severity

Regarding its usefulness in differentiating between pa-
tients and controls, it has been found that when using dif-
ferent time scales, such as in MSE, the values in AD pa-
tients are lower on short time scales and higher on long
time scales compared to those in HC. Studies provide ev-
idence that MSE is also a potential biomarker of disease
severity, as a decrease in short time scales and an increase
in long time scales correlate with cognitive decline mea-
sures. Therefore, as cognitive decline increases, a greater
number of alterations in EEG signals are evidenced.

The increased complexity in long time scales of MSE
could be related to possible compensatory mechanisms in
the brain that are activated upon neuronal death or synaptic
loss in a specific area. Gaubert et al. [69] (2019) described
this finding. In their study, early neurodegeneration (mea-
sured in amyloid beta load) appeared to be modulated by
an increase in spectral frequency [69]. However, the patho-
physiological mechanism of these findings in MSE is not
yet fully understood.

From a mathematical perspective, MSE short scales
aremore sensitive to high-frequency bands. Therefore, a re-
duction in entropy on these scales indicates less variability
in high frequencies (Beta and gamma). On the other hand,
long scales are more sensitive to low-frequency bands.
Consequently, an increase in entropy on longer scales trans-
lates into greater complexity in lower frequencies [69].

Alternatively, observed changes in entropy may be
due to a redistribution in the spectral power of EEG signals
[14], that is, to the change in the relative intensity of high-
and low-frequency waves [19,60]. In this scenario, the de-
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Table 4. Sensitivity, Specificity, and Accuracy for differentiating Alzheimer’s disease (AD) patients from those with SCC, MCI
and HC using entropy-based measures.

Study Method Classifier Class Sensitibity Specificity Accuracy

Abazid et al.
[58], 2021

  EpEn+ functional
connectivity mea-
sures

  SVM  AD vs SCC  85.1–96.4%  84–96%  84.0–96.0% 

MCI vs SCC  92.8–96.4%  77.2–96.4%  88.94% 

AD vs MCI vs HC  91.0%  87.0%  82.6–86.9% 

Amezquita-
Sanchez et al.
[40], 2021 

DEI + DWT  FLC  AD vs MCI vs HC  91.0%  87.0%  82.8–89.9% 

Cao et al.
[36], 2015

  ApEn  SVM  AD vs HC  81.5%  81.5%  81.4% 

SampEn  86.1%  84.0%  85.0% 

fApEn  86.8%  84.1%  85.3% 

fSampEn  90.1%  85.6%  88.1% 

Das & Puthankat-
til [61], 2022

LZC + HFD +
FDispEn

NR MCI-AD vs HC NR  NR NR

Houmani et al.
[35], 2018 

EpEn  SVM  AD vs SCC  87.8%  100%  91.6% 

Maturana et al.
[20], 2019

  MSE  QDA  AD vs HC + MCI  81.8%  58.5%  69.7% 

HC vs AD  88.8%  52.3%  79.1% 

McBride et al.
[25], 2015

  TE  SVM  AD vs HC  82.4–100%  86.7–100%  87.5–93.8% 

AD vs MCI  88.2–100%  64.7–93.8%  81.8–90.9% 

MCI vs HC  87.5–100%  86.7%  87.1–93.6% 

McBride et al.
[38], 2014

  SampEn +
SpectEn + LZC
+ Other spectral
mesures

  SVM  AD vs HC  64.7–100%  80.0–88.2%  71.9–96.9% 

AD vs MCI  82.4–88.2%  87.5–100%  87.9–90.9% 

MCI vs HC  93.8–100%  73.3–100%  83.9–96.8% 

       

Nobukawa et al.
[34], 2020 

MSE  SVM  AD vs HC  NR  NR  73.5% 

Perez et al. [64],
2022

RP + HjC + SE MLP MCI vs mild AD + HC NR NR  NR

Polat [62], 2022 PE + Complexo-
gram

MobileNet AD + HC 45%–100% 48–100% 48–100%

Puri et al.
[63], 2022

ShE + TsE +
ReEn, K

EBT AD + HC 90.49% 97.50% 96.20%

SVM 89.35% 96.50% 93.80%

KNN 86.69% 96.75% 93.10%

Puri et al.
[59], 2023

ShE + TsE +
ReEn + DWT +
VMD

DT + SVM +
EBT + KNN +

NN

AD vs HC 96.06% 99.50% 97.70%

AD vs MCI 89.35% 100% 94.70%

AD vs MCI vs HC 91.25% 99.75% 95.20%

Ruiz-Gómez et al.
[37], 2017

  SpectEn + Sam-
pEn + FuzzyEn
+ LZC+ AMI +
Other non- linear
measures

  LDA  HC vs AD + MCI  82.3%  64.7%  76.4% 

AD vs HC + MCI  82.3%  64.7%  74.5% 

QDA  HC vs AD + MCI  79.4%  76.4%  78.4% 

AD vs HC + MCI  64.7%  79.4%  74.5% 

MLP  HC vs AD + MCI  82.3%  70.5%  78.4% 

AD vs HC + MCI  70.5%  79.4%  76.4% 

Staudinger & Po-
likar [26], 2011 

SpectEn + HFD +
SC + ZCR 

SVM  AD vs HC  NR  NR  78.0% 
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Table 4. Continued.
Study Method Classifier Class Sensitibity Specificity Accuracy

Sharma et al.
[39], 2019

  SpectEn + FD  SVM  AD vs HC  82.0%  82.0%  82.0% 

AD vs MCI  83.0%  63.0%  73.4% 

MCI vs HC  86.0%  81.0%  84.1% 

Note. Source: Own elaboration. Sensitivity is the ability to correctly detect individuals who do have the condition or dis-
ease. Specificity is the ability to correctly identify individuals who do not have the condition or disease, and accuracy is
the overall ability of the test to correctly classify all individuals, both healthy and sick. A test is considered more useful
the higher its sensitivity and specificity, which are related through accuracy. EpEn, Epoch-based Entropy; DEI, Disper-
sion Entropy Index; DWT, Discrete Wavelet Transform; MSE, Multiscale Entropy; SpectEn, Spectral Entropy; SampEn,
Sample Entropy; FuzzyEn, Fuzzy Entropy; LZC, Lempel-Ziv Complexity; AMI, Auto-Mutual Information; ApEn, Approx-
imate Entropy; fApEn, Fuzzy Approximate Entropy; TE, Transfer Entropy; HFD, Higuchi Fractal Dimension; SC, Spectral
Centroid; ZCR, Zero-Crossing Rate; SVM, Support Vector Machines; FLC, Fuzzy Logic Controller; QDA, Quadratic Dis-
criminant Analysis; LDA, Linear Discriminant Analysis; MLP, Multilayer Perceptron Neural Network; SCC, Subjective
Cognitive Complaint; MCI, Mild Cognitive Impairment; HC, healthy controls; NR, Not Reported; HjC, Hjorth Complex-
ity; K, Kurtosis; FDispEn, Fluctuation-based Dispersion Entropy; VMD, VariationalMode Decomposition; EBT, Ensemble
Bagged Tree; PE, Permutation entropy; TsE, Tsallis entropy ; KNN, k-nearest neighbors; NN, neural network; RP, relative
power; DT, decision tree.

crease in entropy on short scales stems from a reduction of
the signal’s spectral component in the highest frequencies
concerning the spectral element for lower frequencies [37].

Entropy and Machine Learning

The use of machine learning algorithms for analyzing
biological signals has several advantages: reviewing large
volumes of data to detect specific patterns or trends, hav-
ing the possibility of continuous improvement, and being
good at handling multi-dimensional data in dynamic envi-
ronments [70]. Studies that used these algorithms to clas-
sify patients with AD versus individuals without AD di-
agnoses showed, in some cases, high values of sensitivity,
specificity, and accuracy. However, the wide range of val-
ues could be influenced by the great heterogeneity in the
studies, which involves different measures, algorithms, and
inclusion criteria (e.g., patients with MCI or SCC). These
characteristics make it difficult to compare studies directly
[37,60]. In addition, algorithms require a large amount
of high-quality data, and their development and interpreta-
tion require highly qualified professionals in the field [70],
which poses some challenges and always requires a cost-
effectiveness evaluation [64].

Conclusions

In conclusion, we found that the reduction of MSE is
a complexity indicator that consistently detects AD and its
severity. However, it is necessary to reproduce these find-

ings by standardizing themeasurement processes and build-
ing normative variability values to apply these measures in
clinical practice. The latter may facilitate the evaluation
process, especially in cases where clinical diagnostic crite-
ria are insufficient or the presentation is atypical.

Availability of Data and Materials

The datasets used and/or analyzed during the current
study are available from the corresponding author on rea-
sonable request.

Author Contributions

MAZ, ÁAG, JCRC, MÁUL, and DABR conceptu-
alized and designed the review. MAZ, ÁAG, MCMB,
MPVR, and BIF performed the search and data acquisition.
MAZ, ÁAG, JCRC, BIF, MCMB, andMPVR analyzed and
synthesized the data. ÁAG, JCRC, and MÁUL provided
supervision. All authors contributed to drafting or making
significant editorial changes to the manuscript. All authors
read and approved the final manuscript. All authors have
participated sufficiently in the work and agreed to be ac-
countable for all aspects of the work.

Ethics Approval and Consent to Participate

Not applicable.



Ángela Acero-González,
et al.

Is EEG Entropy a Useful Measure for Alzheimer’s Disease?Ángela Acero-González,
et al.

Is EEG Entropy a Useful Measure for Alzheimer’s Disease?Ángela Acero-González,
et al.

Is EEG Entropy a Useful Measure for Alzheimer’s Disease?

362 Actas Esp Psiquiatr 2024;52(3):347–364. https://doi.org/10.62641/aep.v52i3.1632 | ISSN:1578-2735
© 2024 Actas Españolas de Psiquiatría.

Acknowledgment

Not applicable.

Funding

This workwas funded as part of projectMED-295-220
of the Universidad de La Sabana.

Conflict of Interest

The authors declare no conflict of interest.

References

[1] World Health Organization. Global status report on
the public health response to dementia 2017-2025.
World Health Organization: Geneva. 2017. Available at:
https://www.who.int/publications/i/item/global-action-plan-on-the
-public-health-response-to-dementia-2017---2025 (Accessed: 16
September 2023).

[2] Alzheimer’s Disease International. World Alzheimer Report 2019:
Attitudes to dementia. Alzheimer’s Disease International: London.
2019.

[3] World Health Organization. International Statistical Classification of
Diseases and Related Health Problems. 11th Edition. World Health
Organization: Geneva. 2018.

[4] American Psychiatric Association. Diagnostic and Statistical Man-
ual of Mental Disorders. 5th edn. American Psychiatric Publishing,
Arlington American Psychiatric Publishing: Arlington. 2013.

[5] National Health and Medical Research Council. Clin-
ical Practice Guidelines and Principles of Care for
People with Dementia [Internet]. 2016. Available at:
https://cdpc.sydney.edu.au/wp-content/uploads/2019/06/Deme
ntia-Guideline-Recommendations-WEB-version.pdf (Accessed:
14 November 2023).

[6] Shaji KS, Sivakumar PT, Rao GP, Paul N. Clinical Practice Guide-
lines for Management of Dementia. Indian Journal of Psychiatry.
2018; 60: S312–S328.

[7] McKhann GM. The diagnosis of dementia due to Alzheimer’s dis-
ease. Alzheimer’s & Dementia. 2012; 7: 263–269.

[8] National Institute for Health and Care Excellence. Dementia: as-
sessment, management and support for people living with dementia
and their careers. NICE Guidelines [Internet]. 2018. Available at:
https://www.nice.org.uk/guidance/ng97/resources/dementia-asses
sment-management-and-support-for-people-living-with-dementi
a-and-their-carers-pdf-1837760199109 (Accessed: 14 November
2023).

[9] Rabins PV, Deborah Blacker C, Barry Rovner SW, Rummans T,
Schneider LS, Tariot PN, et al. Practice guideline for the treatment
of patients with Alzheimer’s disease and other dementias [Internet].
2010. Available at: https://psychiatryonline.org/pb/assets/raw/sitew
ide/practice_guidelines/guidelines/alzheimers-1410197661013.pdf

(Accessed: 14 November 2023).

[10] Ismail Z, Black SE, Camicioli R, Chertkow H, Herrmann N, Laforce
R, Jr, et al. Recommendations of the 5th Canadian Consensus Con-
ference on the diagnosis and treatment of dementia. Alzheimer’s &
Dementia: the Journal of the Alzheimer’s Association. 2020; 16:
1182–1195.

[11] Jack CR, Jr, Bennett DA, Blennow K, Carrillo MC, Dunn B, Hae-
berlein SB, et al. NIA-AA Research Framework: Toward a biologi-
cal definition of Alzheimer’s disease. Alzheimer’s & Dementia: the
Journal of the Alzheimer’s Association. 2018; 14: 535–562.

[12] Dubois B, Feldman HH, Jacova C, Hampel H, Molinuevo JL,
Blennow K, et al. Advancing research diagnostic criteria for
Alzheimer’s disease: the IWG-2 criteria. The Lancet. Neurology.
2014; 13: 614–629.

[13] Blennow K, Zetterberg H. Biomarkers for Alzheimer’s disease: cur-
rent status and prospects for the future. Journal of Internal Medicine.
2018; 284: 643–663.

[14] Kulkarni N, Bairagi V. EEG-Based Diagnosis of Alzheimer Disease.
A Review and Novel Approaches for Feature Extraction and Classi-
fication Techniques. 1st edn. AP Academic Press: London. 2018.

[15] Biasiucci A, Franceschiello B, Murray MM. Electroencephalogra-
phy. Current Biology. 2019; 29: R80–R85.

[16] Costa M, Goldberger AL, Peng CK. Multiscale entropy analysis of
biological signals. Physical Review. E, Statistical, Nonlinear, and
Soft Matter Physics. 2005; 71: 021906.

[17] Costa M, Goldberger AL, Peng CK. Multiscale entropy analysis of
complex physiologic time series. Physical Review Letters. 2002; 89:
068102.

[18] Borowska M. Entropy-based algorithms in the analysis of biomedi-
cal signals. Studies in Logic, Grammar and Rhetoric. 2015; 43: 21–
32.

[19] Sun J, Wang B, Niu Y, Tan Y, Fan C, Zhang N, et al. Complexity
Analysis of EEG, MEG, and fMRI in Mild Cognitive Impairment
and Alzheimer’s Disease: A Review. Entropy (Basel, Switzerland).
2020; 22: 239.

[20] Maturana-Candelas A, Gómez C, Poza J, Pinto N, Hornero R. EEG
Characterization of the Alzheimer’s Disease Continuum byMeans of
Multiscale Entropies. Entropy (Basel, Switzerland). 2019; 21: 544.

[21] De Vito EL. Medicine at the “edge of chaos”. Life, entropy and com-
plexity. Medicina. 2016; 76: 45–54.

[22] Leistedt SJJ, Linkowski P, Lanquart JP, Mietus JE, Davis RB, Gold-
berger AL, et al. Decreased neuroautonomic complexity in men dur-
ing an acute major depressive episode: analysis of heart rate dynam-
ics. Translational Psychiatry. 2011; 1: e27.

[23] Akdemir Akar S, Kara S, Agambayev S, Bilgiç V. Nonlinear analysis
of EEGs of patients withmajor depression during different emotional
states. Computers in Biology and Medicine. 2015; 67: 49–60.

[24] Horvath A, Szucs A, Csukly G, Sakovics A, Stefanics G, Kamondi
A. EEG and ERP biomarkers of Alzheimer’s disease: a critical re-
view. Frontiers in Bioscience (Landmark Edition). 2018; 23: 183–
220.

[25] McBride J, Zhao X, Munro N, Jicha G, Smith C, Jiang Y. Discrim-
ination of mild cognitive impairment and Alzheimer’s disease using
transfer entropy measures of scalp EEG. Journal of Healthcare En-
gineering. 2015; 6: 55–70.

https://www.who.int/publications/i/item/global-action-plan-on-the-public-health-response-to-dementia-2017---2025
https://www.who.int/publications/i/item/global-action-plan-on-the-public-health-response-to-dementia-2017---2025
https://cdpc.sydney.edu.au/wp-content/uploads/2019/06/Dementia-Guideline-Recommendations-WEB-version.pdf
https://cdpc.sydney.edu.au/wp-content/uploads/2019/06/Dementia-Guideline-Recommendations-WEB-version.pdf
https://www.nice.org.uk/guidance/ng97/resources/dementia-assessment-management-and-support-for-people-living-with-dementia-and-their-carers-pdf-1837760199109
https://www.nice.org.uk/guidance/ng97/resources/dementia-assessment-management-and-support-for-people-living-with-dementia-and-their-carers-pdf-1837760199109
https://www.nice.org.uk/guidance/ng97/resources/dementia-assessment-management-and-support-for-people-living-with-dementia-and-their-carers-pdf-1837760199109
https://psychiatryonline.org/pb/assets/raw/sitewide/practice_guidelines/guidelines/alzheimers-1410197661013.pdf
https://psychiatryonline.org/pb/assets/raw/sitewide/practice_guidelines/guidelines/alzheimers-1410197661013.pdf


Ángela Acero-González,
et al.

Is EEG Entropy a Useful Measure for Alzheimer’s Disease?Ángela Acero-González,
et al.

Is EEG Entropy a Useful Measure for Alzheimer’s Disease?Ángela Acero-González,
et al.

Is EEG Entropy a Useful Measure for Alzheimer’s Disease?

Actas Esp Psiquiatr 2024;52(3):347–364. https://doi.org/10.62641/aep.v52i3.1632 | ISSN:1578-2735
© 2024 Actas Españolas de Psiquiatría.

363

[26] Staudinger T, Polikar R. Analysis of complexity based EEG features
for the diagnosis of Alzheimer’s disease. Annual International Con-
ference of the IEEE Engineering in Medicine and Biology Society.
IEEE Engineering in Medicine and Biology Society. Annual Inter-
national Conference. 2011; 2011: 2033–2036.

[27] Deng B, Liang L, Li S, Wang R, Yu H, Wang J, et al. Complex-
ity extraction of electroencephalograms in Alzheimer’s disease with
weighted-permutation entropy. Chaos (Woodbury, N.Y.). 2015; 25:
043105.

[28] Simons S, Abasolo D, Escudero J. Classification of Alzheimer’s
disease from quadratic sample entropy of electroencephalogram.
Healthcare Technology Letters. 2015; 2: 70–73.

[29] Yang AC, Wang SJ, Lai KL, Tsai CF, Yang CH, Hwang JP, et al.
Cognitive and neuropsychiatric correlates of EEG dynamic com-
plexity in patients with Alzheimer’s disease. Progress in Neuro-
psychopharmacology & Biological Psychiatry. 2013; 47: 52–61.

[30] Garn H, Waser M, Deistler M, Benke T, Dal-Bianco P, Ransmayr G,
et al. Quantitative EEG markers relate to Alzheimer’s disease sever-
ity in the Prospective Dementia Registry Austria (PRODEM). Clin-
ical Neurophysiology: Official Journal of the International Federa-
tion of Clinical Neurophysiology. 2015; 126: 505–513.

[31] Fan M, Yang AC, Fuh JL, Chou CA. Topological Pattern Recog-
nition of Severe Alzheimer’s Disease via Regularized Supervised
Learning of EEG Complexity. Frontiers in Neuroscience. 2018; 12:
685.

[32] Moher D, Shamseer L, Clarke M, Ghersi D, Liberati A, Petticrew
M, et al. Preferred reporting items for systematic review and meta-
analysis protocols (PRISMA-P) 2015 statement. Revista Española
de Nutrición Humana y Dietética. 2016; 20: 148–160.

[33] Heddle NM. The research question. Transfusion. 2007; 47: 15–17.

[34] Nobukawa S, Yamanishi T, Kasakawa S, Nishimura H, Kikuchi M,
Takahashi T. Classification Methods Based on Complexity and Syn-
chronization of Electroencephalography Signals in Alzheimer’s Dis-
ease. Frontiers in Psychiatry. 2020; 11: 255.

[35] Houmani N, Vialatte F, Gallego-Jutglà E, Dreyfus G, Nguyen-
Michel VH, Mariani J, et al. Diagnosis of Alzheimer’s disease
with Electroencephalography in a differential framework. PloS One.
2018; 13: e0193607.

[36] Cao Y, Cai L, Wang J, Wang R, Yu H, Cao Y, et al. Characterization
of complexity in the electroencephalograph activity of Alzheimer’s
disease based on fuzzy entropy. Chaos (Woodbury, N.Y.). 2015; 25:
083116.

[37] Ruiz-Gómez SJ, Gómez C, Poza J, Gutiérrez-Tobal GC, Tola-
Arribas MA, Cano M, et al. Automated Multiclass Classification of
Spontaneous EEG Activity in Alzheimer’s Disease and Mild Cogni-
tive Impairment. Entropy (Basel, Switzerland). 2018; 20: 35.

[38] McBride JC, Zhao X, Munro NB, Smith CD, Jicha GA, Hively L, et
al. Spectral and complexity analysis of scalp EEG characteristics for
mild cognitive impairment and early Alzheimer’s disease. Computer
Methods and Programs in Biomedicine. 2014; 114: 153–163.

[39] Sharma N, Kolekar MH, Jha K, Kumar Y. EEG and Cognitive
Biomarkers Based Mild Cognitive Impairment Diagnosis. IRBM.
2019; 40: 113–121.

[40] Amezquita-Sanchez JP, Mammone N, Morabito FC, Adeli H. A
New dispersion entropy and fuzzy logic system methodology for
automated classification of dementia stages using electroencephalo-

grams. Clinical Neurology and Neurosurgery. 2021; 201: 106446.

[41] Santos Toural JE, Montoya Pedrón A, Marañón Reyes EJ. Classi-
fication among healthy, mild cognitive impairment and Alzheimer’s
disease subjects based on wavelet entropy and relative beta and theta
power. Pattern Analysis and Applications. 2021; 24: 413–422.

[42] Abásolo D, Hornero R, Espino P, Alvarez D, Poza J. Entropy analy-
sis of the EEG background activity in Alzheimer’s disease patients.
Physiological Measurement. 2006; 27: 241–253.

[43] Escudero J, Abásolo D, Hornero R, Espino P, López M. Analysis of
electroencephalograms in Alzheimer’s disease patients with multi-
scale entropy. Physiological Measurement. 2006; 27: 1091–1106.

[44] Labate D, Foresta FL, Morabito G, Palamara I, Morabito FC. En-
tropic measures of EEG complexity in Alzheimer’s disease through
a multivariate multiscale approach. IEEE Sensors Journal. 2013; 13:
3284–3292.

[45] Al-Nuaimi AH, Jammeh E, Sun L, Ifeachor E. Tsallis entropy as a
biomarker for detection of Alzheimer’s disease. Annual International
Conference of the IEEE Engineering in Medicine and Biology So-
ciety. IEEE Engineering in Medicine and Biology Society. Annual
International Conference. 2015; 2015: 4166–4169.

[46] Ando M, Nobukawa S, Kikuchi M, Takahashi T. Identification of
Electroencephalogram Signals in Alzheimer’s Disease by Multi-
fractal and Multiscale Entropy Analysis. Frontiers in Neuroscience.
2021; 15: 667614.

[47] Deng B, Cai L, Li S,Wang R, YuH, ChenY, et al. Multivariate multi-
scale weighted permutation entropy analysis of EEG complexity for
Alzheimer’s disease. Cognitive Neurodynamics. 2017; 11: 217–231.

[48] Simons S, Espino P, Abásolo D. Fuzzy Entropy Analysis of the
Electroencephalogram in Patients with Alzheimer’s Disease: Is the
Method Superior to Sample Entropy? Entropy (Basel, Switzerland).
2018; 20: 21.

[49] Abásolo D, Escudero J, Hornero R, Gómez C, Espino P. Approxi-
mate entropy and auto mutual information analysis of the electroen-
cephalogram in Alzheimer’s disease patients. Medical & Biological
Engineering & Computing. 2008; 46: 1019–1028.

[50] Abásolo D, Hornero R, Espino P, Poza J, Sánchez CI, de la
Rosa R. Analysis of regularity in the EEG background activity of
Alzheimer’s disease patients with Approximate Entropy. Clinical
Neurophysiology: Official Journal of the International Federation
of Clinical Neurophysiology. 2005; 116: 1826–1834.

[51] Wang XW, Zhao XH, Li F, Lin Q, Hu ZH. Sample entropy and
surrogate data analysis for Alzheimer’s disease. Mathematical Bio-
sciences and Engineering: MBE. 2019; 16: 6892–6906.

[52] Vicchietti ML, Ramos FM, Betting LE, Campanharo ASLO. Com-
putational methods of EEG signals analysis for Alzheimer’s disease
classification. Scientific Reports. 2023; 13: 8184.

[53] Azami H,Moguilner S, Penagos H, Sarkis RA, Arnold SE, Gomperts
SN, et al. EEG Entropy in REM Sleep as a Physiologic Biomarker in
Early Clinical Stages ofAlzheimer’s Disease. Journal of Alzheimer’s
Disease: JAD. 2023; 91: 1557–1572.

[54] Mizuno T, Takahashi T, Cho RY, Kikuchi M, Murata T, Takahashi
K, et al. Assessment of EEG dynamical complexity in Alzheimer’s
disease usingmultiscale entropy. Clinical Neurophysiology: Official
Journal of the International Federation of Clinical Neurophysiology.
2010; 121: 1438–1446.

[55] Coronel C, Garn H, Waser M, Deistler M, Benke T, Dal-Bianco P,



Ángela Acero-González,
et al.

Is EEG Entropy a Useful Measure for Alzheimer’s Disease?Ángela Acero-González,
et al.

Is EEG Entropy a Useful Measure for Alzheimer’s Disease?Ángela Acero-González,
et al.

Is EEG Entropy a Useful Measure for Alzheimer’s Disease?

364 Actas Esp Psiquiatr 2024;52(3):347–364. https://doi.org/10.62641/aep.v52i3.1632 | ISSN:1578-2735
© 2024 Actas Españolas de Psiquiatría.

et al. Quantitative EEG markers of entropy and auto mutual infor-
mation in relation to MMSE scores of probable Alzheimer’s disease
patients. Entropy. 2017; 19: 130.

[56] Hsu CF, Chao HH, Yang AC, Yeh CW, Hsu L, Chi S. Discrimination
of severity of Alzheimer’s disease with multiscale entropy analysis
of EEG dynamics. Applied Sciences (Switzerland). 2020; 10: 1244.

[57] Wu T, Sun F, Guo Y, Zhai M, Yu S, Chu J, et al. Spatio-
Temporal Dynamics of Entropy in EEGS during Music Stimulation
of Alzheimer’s Disease Patients with Different Degrees of Dementia.
Entropy (Basel, Switzerland). 2022; 24: 1137.

[58] Abazid M, Houmani N, Boudy J, Dorizzi B, Mariani J, Kinugawa
K. A Comparative Study of Functional Connectivity Measures for
Brain Network Analysis in the Context of AD Detection with EEG.
Entropy (Basel, Switzerland). 2021; 23: 1553.

[59] Puri D, Nalbalwar S, Nandgaonkar A, Rajput J, Wagh A. Identifica-
tion of Alzheimer’s Disease Using Novel Dual Decomposition Tech-
nique and Machine Learning Algorithms from EEG Signals. Inter-
national Journal on Advanced Science, Engineering & Information
Technology. 2023; 13: 658–665.

[60] Şeker M, Özbek Y, Yener G, Özerdem MS. Complexity of EEG Dy-
namics for Early Diagnosis of Alzheimer’s Disease Using Permu-
tation Entropy Neuromarker. Computer Methods and Programs in
Biomedicine. 2021; 206: 106116.

[61] Das S, Puthankattil SD. Functional Connectivity and Complex-
ity in the Phenomenological Model of Mild Cognitive-Impaired
Alzheimer’s Disease. Frontiers in Computational Neuroscience.
2022; 16: 877912.

[62] Polat H. Time-Frequency Complexity Maps for EEG-Based Diag-
nosis of Alzheimer’s Disease Using a Lightweight Deep Neural Net-
work. Traitement du Signal. 2022; 39: 2103–2113.

[63] Puri D, Nalbalwar S, Nandgaonkar A, Wagh A. Alzheimer’s disease
detection from optimal electroencephalogram channels and tunable
Q-wavelet transform. Indonesian Journal of Electrical Engineering
and Computer Science. 2022; 25: 1420–1428.

[64] Perez-Valero E, Lopez-Gordo MÁ, Gutiérrez CM, Carrera-Muñoz
I, Vílchez-Carrillo RM. A self-driven approach for multi-class dis-
crimination in Alzheimer’s disease based on wearable EEG. Com-
puter Methods and Programs in Biomedicine. 2022; 220: 106841.

[65] Tsai PH, Chang SC, Liu FC, Tsao J, Wang YH, Lo MT. A Novel Ap-
plication ofMultiscale Entropy in Electroencephalography to Predict
the Efficacy of Acetylcholinesterase Inhibitor in Alzheimer’s Dis-
ease. Computational and Mathematical Methods in Medicine. 2015;
2015: 953868.

[66] Fide E, Polat H, Yener G, Özerdem MS. Effects of Pharmacologi-
cal Treatments in Alzheimer’s Disease: Permutation Entropy-Based
EEG Complexity Study. Brain Topography. 2023; 36: 106–118.

[67] López-Sanz D, Bruña R, Garcés P, Martín-Buro MC, Walter S, Del-
gado ML, et al. Functional Connectivity Disruption in Subjective
Cognitive Decline andMild Cognitive Impairment: A Common Pat-
tern of Alterations. Frontiers in Aging Neuroscience. 2017; 9: 109.

[68] Delbeuck X, Van der Linden M, Collette F. Alzheimer’s disease as a
disconnection syndrome? Neuropsychology Review. 2003; 13: 79–
92.

[69] Gaubert S, Raimondo F, Houot M, Corsi MC, Naccache L, Sitt JD,
et al. EEG evidence of compensatory mechanisms in preclinical
Alzheimer’s disease. Brain Internet. 2019; 142: 2096–2112.

[70] Cao Z. A review of artificial intelligence for EEG‐based
brain−computer interfaces and applications. Brain Science
Advances. 2020; 6: 162–170.


	Abstract
	Keywords
	Introduction
	Methodology
	Results
	Discussion
	Entropy as a Discriminator of Disease and Severity
	Entropy and Machine Learning

	Conclusions
	Availability of Data and Materials
	Author Contributions
	Ethics Approval and Consent to Participate
	Acknowledgment
	Funding
	Conflict of Interest

