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Reviews

Análisis de complejidad de la actividad 
cerebral y trastornos mentales

El conocimiento sobre los procesos cerebrales que 
subyacen tras los trastornos mentales ha incrementado 
significativamente en las últimas décadas, pero a pesar 
del importante esfuerzo investigador no disponemos de 
ningún marcador biológico para estos trastornos.  Por 
ejemplo, las técnicas neurofisiológicas (EEG o MEG) se 
han utilizado ampliamente en la investigación de los 
síndromes psiquiátricos más importantes como la 
esquizofrenia, la depresión mayor, el trastorno bipolar o 
el trastorno obsesivo/compulsivo. Los resultados de 
algunos de estos estudios permitieron la construcción de 
modelos estadísticos con alta sensibilidad y especificidad, 
aunque estos modelos no han alcanzado la práctica 
clínica diaria. Una posible explicación  para está situación 
sería la utilización de procedimientos de análisis 
inadecuados que podrían perder elementos importantes 
de la información contenida en la señal cerebral.  En este 
sentido se han propuesto nuevos métodos de de análisis 
no-lineal para los datos neurofisiológicos. De particular 
interés resulta el análisis de complejidad de la señal 
cerebral que  se ha  utilizado ampliamente en la 
investigación de trastornos psiquiátricos. Los parámetros 
de complejidad EEG o MEG generalmente estiman la 
predictibilidad de las oscilaciones cerebrales y/o el 
número de osciladores independientes que subyacen tras 
las señales observadas. Más importante aun, los 
parámetros de complejidad parecen ser sensibles a los 
componentes temporales de la actividad cerebral y por 
tanto podrían reflejar bien la naturaleza dinámica de los 
trastornos psiquiátricos.  Este artículo revisa alguno de 
los estudios más importantes dentro de este campo, en 
especial aquellos que se centran en el diagnóstico, el 
seguimiento y la respuesta al tratamiento.
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Analysis of brain complexity and 
mental disorders

Knowledge on the brain processes underlying mental 
disorders has significantly increased in recent decades, but in 
spite of the very important research efforts being made, there 
is no biological marker available for such disorders. For 
example, neurophysiological techniques (EEG or MEG), have 
been widely utilized in the investigation of the most important 
psychiatric syndromes such as schizophrenia, major depression, 
bipolar disorder or obsessive/compulsive disorder. The 
outcomes of some of those neurophysiological studies have 
made it possible to develop statistical models having very high 
sensitivity and specificity, although those models have not 
been incorporated into the day to day clinical practice. A 
possible explanation for this situation is that an inadequate 
analysis procedure which might be missing some important 
quantums of information contained in brain signals is being 
used. In this sense, new methods of non-linear analysis have 
been proposed for the investigation of neurophysiological 
data. Particularly, the analysis of brain signal complexity has 
been widely utilized in the investigation of psychiatric 
disorders.  Parameters of EEG or MEG complexity usually 
estimate the predictability of brain oscillations and/or the 
number of independent oscillators underlying the observed 
signals. More importantly, complexity parameters seem to be 
sensitive to the temporal components of brain activity, and 
therefore might reflect the dynamical nature of psychiatric 
disorders.   This paper reviews some of the most relevant 
studies within this field, especially those focusing on the 
diagnosis, follow-up and prediction of response to treatment. 
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studies (see for example Monastra et al.,41) throw light on 
sensitivity/specificity values that are truly important. What 
is the problem than? We cannot rule out that within the 
“paradigm change” that has occurred in the 
psychopathological research, the neurophysiological 
techniques have come off badly compared to the 
neuroimaging techniques that offer results having much 
more intuitive understanding given they are visual character.  
However, this is only a partial explanation.   

If we review the literature, it is clear that most of the 
disorders that affect the mental condition of the individuals 
produce a very similar variation in baseline brain activity, 
that is, that the so-called “slowing” of the traces. This 
slowing pattern, that is defined in an operative way as an 
increase in low frequency band waves (delta and especially 
theta) versus high frequency ones (alpha and beta), appears 
at least in schizophrenia, OCD, ADHD, dementias, cognitive 
deterioration and partially in depression and bipolar 
disorders41-50. Some disorders have special characteristics, 
as the “dysrhythmia” of schizophrenia51 or the “small sharp 
spike pattern” (paroxysmal activity similar to the epileptic) 
of the bipolar disorder52. Depression shows a somewhat 
special pattern, since several works have described an 
asymmetric increase of the alpha band power in the frontal 
cortex, accompanied by a decrease in delta power53, 54. It is 
interesting to also see that this pattern changes with 
effective antidepressant treatment55.

Having seen all these data, it seems that we could make 
a more solid response to explain the limited success of the 
neurophysiological techniques: the current studies may be 
very sensitive but they are extremely non-specific. If 
different conditions share a same “sign,” the utility of this 
sign is very relative. To add more wood to the fire, most of 
the EEG-MEG studies have been carried out in patients who 
were receiving treatment with psychopharmaceuticals 
which, by themselves, produce a significant variation in the 
brain activity pattern which is well known56.  

Faced with this situation, the investigators in the area 
considered some time ago of whether the techniques used 
to analyze the EEG or MEG activity were the adequate ones 
and, especially, if they were taking into account the physical 
characteristics of the electrical and magnetic signals to 
extract all the information they contained from them. A 
completely new line of investigation, the non-linear analysis 
methods, arose from this approach. 

An alternative proposal: the non-linear analysis 
of brain activity methods

Non-linear analysis of brain activity has led to a radical 
advance, because of the problems of traditional analysis 

INTRODUCTION: MAGNETOENCEPHALOGRAPHY 
IN MENTAL DISORDERS, THE PROBLEM OF 
BIOLOGICAL MARKERS

During recent years, there has been a very important 
increase in knowledge about brain processes underlying 
mental disorders. We also expect that this knowledge will play 
a fundamental role in the diagnosis and treatment of mental 
diseases and in the follow-up of their evolution. The 
neurophysiological techniques form a part of this large group 
of methods that aim to solve the important problem we are 
currently encountering: there are no biological markers for 
most of the mental disorders. Even more so, when we speak of 
“markers,” we are not only referring to the basic question of 
the diagnostic marker but also to those aimed at the follow-
up of the disease and prediction of the therapeutic response. 

MEG, as a neuromagnetic counterpart of the EEG, is a 
relatively recent technique and therefore its use in the 
psychiatric population is currently focused on the basic or 
basic-clinical research and is still not based on diagnosis and 
follow-up of psychiatric patients. However, the MEG has an 
extensive application in the investigation of psychiatric 
disorders, which is indicated by a brief review of the literature.  
Already by 19991, there was sufficient data to compile a 
monographic article on the application of the MEG in 
psychiatry. Since then, there has been a growing number of 
investigations and there is no “major” psychiatric disorder 
that has not been approached by MEG studies. Although it 
would be extraordinarily long-winded to refer to all of them, 
we must indicate some examples: major depression2-10, 
schizophrenia11-19, bipolar disorder20-26, attention deficit 
hyperactivity disorder (ADHD)27-34, obsessive-compulsive 
disorder (OCD)35-40, etc.

These studies are focused on investigating both baseline 
brain activity of the patients and its response to certain 
cognitive tasks. In general, MEG investigations have 
confirmed what we already knew thanks to the literature on 
EEG: baseline brain activity is somehow altered in patients 
with mental disorders and their cognitive activity has 
significant variations compared to the control subjects.  It 
should be mentioned that most of the cognitive studies have 
focused on pure basic research and the diagnostic power for 
these disorders has not been calculated. The studies 
performed on spontaneous brain activity of the patients and 
especially those in which an analysis has been made of the 
traditional power spectrum of the signal registered (delta, 
theta, alpha bands, etc.) have aimed to propose these tests 
as clinical tools - with what results?

The first answer to this question is that the reality is 
obstinate and it is clear that neither the EEG (of long 
tradition) nor the MEG are currently used as diagnostic 
tests in mental disorders.  This is true even though some 
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of an uncountable number of structural units that operate 
within a large range of time and space scales that permit the 
body to adapt to the environment. To describe and quantify 
the mechanisms of these behaviors, the investigators have 
used new techniques derived from the complexity theory. 
However, what do we understand by complexity in the 
framework of biological signals? It is very complicated to 
offer a simple definition. Nonetheless, the complexity 
algorithms that are being used at present measure, in a 
general way, two aspects of the biological systems: 1. The 
grade of entropy or “predictability” of the system 
(approximate entropy, spectral entropy, etc.) and 2. The 
minimum number of variables, components or generators 
that make it possible to describe the behavior of this system 
(dimension of correlation, Lyapunov components, Lempel-
Ziv complexity, etc., see Pereda et al.,70). If we follow the 
theory of Goldberger71, healthy biological systems are the 
most complex and any disease or aging itself would produce 
a decrease in their complexity. After, we will see that things 
are more complicated and certain disorders are characterized 
by an increase in the complexity values72.  

As we have been able to verify, there are many 
estimators of the complexity of the biological systems 
that can be applied to the brain signals. However, for 
some time now, our  research group has been working 
with an estimator called Lempel-Ziv complexity (LZ)73 
that is ideal for several reasons. Higher values of LZ 
complexity (on a scale from zero to one) correspond to 
greater complexity in the data analyzed. This measurement 
does not depend on whether the signal to be analyzed has 
been generated by a random or deterministic process73. 
Furthermore, it contains the notion of complexity in the 
statistical sense of the term (Shannon entropy) and in the 
deterministic one (Kolmogorov complexity)74. That is, the 
complexity of a sequence depends on the number of bits 
of the shortest program capable of generating it73. 
Therefore, this complexity measurement is related with 
the number of subsequences present in the original series 
and with their repetition rate75.

Due to these characteristics, the LZ complexity has been 
applied in many different settings. For example, this metric has 
been used to analyze EEG and MEG signals of patients with 
Alzheimer’s disease and mild cognitive deterioration73, 76, 77 and 
to measure the depth of the anesthesia78. In addition, it has 
been demonstrated that the LZ complexity makes it possible 
to predict epileptic attacks75. Within the field of psychiatry,  
Li et al. have used the LZ complexity in patients with 
psychotic depression and schizophrenia66 and our group has 
used this parameter with patients with ADHD31, major 
depression79 and schizophrenia80. 

Now that we know what the LZ complexity is used for 
and what its technical characteristics are, we should 

methods to extract all the information offered by the neuro-
physiological  techniques57. The fundamental assumption of 
these methods is that the EEG or MEG signals are generated 
by deterministic processes that reflect non-linear associations 
between neuron populations. Even more, it is assumed that 
the non-linearity of the brain is involved from the neural 
level58, since the dynamic behavior of the individual neurons 
is governed by threshold and saturation phenomena. These 
two phenomena, that are based on the behavior of the 
neuron, are typically non-linear, that is, they reflect that the 
response of the neuron is not proportional to the stimuli 
received at each moment. 

The first studies to apply this theoretical framework 
were conducted in 1985 in the monkey motor cortex59 and 
was called “chaos analysis.” Since then, these measures have 
been developing until reaching the current situation in 
which we have several nonlinear estimators, among which 
the estimators of brain signal complexity stand out. Many of 
these non-linear estimators take another basic characteristic 
of the brain signals into account that are overlooked by the 
traditional analysis methods: non-stationarity57. In a formal 
way, we could define stationarity as the property through 
which the basic statistical characteristics of the signal (mean, 
standard deviation, etc.) are maintained stable over time. 
This property is fundamental because it incorporates one of 
the essences of brain activity: change over time. The spectrum 
analysis methods assume that the brain signal collected over 
an ideal period of 5 minutes remains stable over time (it is 
stationary) so that we do not lose relevant information if we 
extract the power from a frequency band considering this 
period as a “whole.” We now know that this is not true and 
that only during very variable periods of time does the brain 
signal remain stable so as to meet the stationarity 
requirements. The brain signal is essentially changeable and 
thus non-stationary. 

By chance, leaving aside the field of Alzheimer’s disease 
and cognitive deterioration, the Psychiatry setting has been 
where non-linear analysis has been used most and specifically, 
in the analysis of brain complexity. This is indicated  by the 
large amount of works published up to date60-69. These 
studies focus on the application of the complexity-variability 
estimators as a diagnostic supportive element or in their use 
for the prediction of the therapeutic response in depression 
as well as in schizophrenia.  However, first we are going to 
see in more detail what the non-linear methods of analysis 
of brain complexity consist in.

Introduction to the complexity concept: Lempel-
Ziv Complexity

A basic characteristic describing the biological systems 
is their complexity. This complexity is due to the interaction 
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in which a functional alteration occurs in the brain, whether 
globally or focalized, would be a candidate for investigation 
with the LZ complexity parameter.

Lempel-Ziv complexity and mental disorders: 
diagnosis, evolution and prediction of the 
therapeutic response

Up to now, we have described some general 
characteristics of the non-linear analysis and of the LZ 
complexity, also on the benefits and technical characteristics 
of the parameter. However, we are still facing the most 
important challenge: to justify the grounds that support the 
motivation of using a complexity parameter for diagnosis, 
the follow-up of the evolution and prediction of the 
therapeutic response of the mental disorders. This motivation 
has three fundamentals that interact and that we are going 
to define in order of importance in the following:

The LZ complexity is, as we have already seen, less 1. 
sensitive to external factors (noise) that may affect 
the physiological recordings. Based on our experience, 
the consequence of this lower sensitivity is that the 
brain signal recorded is not as affected by additional 
sources of variability,  with the exception of those 
imposed by the conditions of the subject in whom the 
recording is being done. Within the setting of the MEG 
recordings, this property acquires special importance, 
since it is well known that the methods of traditional 
analysis are greatly influenced by the conditions of 
magnetic noise and artifacts that appear in the 
recording. This converts the measure of LZ complexity 
into an ideal one to perform follow-up studies that 
evaluate, for example, the effect of a certain 
psychopharmaceuticals and in which the patient 
undergoes a recording on several occasions to verify 
the changes produced by the drug in the brain activity. 
In this case, we could expect that these potential 
variations in the brain signal would be due exclusively 
to a change in the physiological condition of the 
patient and not to a change in the environmental 
conditions under which the recording is being 
performed. This has a fundamental importance to 
assure the relevance of the studies.
 The LZ  complexity is an index of the variability of the 2. 
patterns of frequency of our brain activity. What does 
this variability depend on? The classical literature on 
EEG82 mentions the importance of the preservation of 
the thalamocortical connections and corticocortical 
connections in the generation of brain rhythms. In fact, 
it is well known how neurodegenerative conditions in 
which there is significant disconnection (a clear example 
being that of Alzheimer’s) produce a decrease in the 
variability of these rhythms and the tendency towards 

understand what it means in the setting of brain signals. 
One of the forms of intuitively defining the LZ complexity 
is that this measure captures the temporal structure of 
the brain signal, that is, the LZ complexity is sensitive to 
changes that are produced in brain activity over time. We 
have already seen that change is one of the basic 
characteristics of the healthy brain. Healthy brains are in 
general more changing than the brains of patients with 
some conditions such as epilepsy or Alzheimer’s disease. 
Equally, some drugs, such as some anesthetics, influence 
brain activity, making this more homogenous, that is, 
again decreasing this “normal” tendency to change78. 
However, this concept of “capacity to detect the change” 
is merely intuitive, and while we do not know the real 
meaning of this complexity measure, its clinical application 
is doubtful.  

In this sense, Aboy et al.81  conducted a fundamental 
study. The authors tested what type of characteristics of 
the signal would produce significant changes, in the sense 
of increase or decrease, in the LZ complexity. A first 
important piece of information, considering the limitations 
of the MEG and other neuroimaging techniques, is that 
noise (external interferences) does not significantly 
influence the LZ values.  If we consider the predominance 
of certain frequency patterns, we observe that the 
predominance of low frequency activity (typical in some 
conditions as we have already seen) produces a marginal 
decrease of the complexity values.  The factor that really 
produces an increase in the LZ complexity values is the 
“number of components of frequency” that a signal has. 
That is, as the changes in the patterns of frequency increase 
in the given recording of brain activity, it will show higher 
values in the LZ complexity. If the activity remains stable 
(or synchronized) in the given frequency (alpha, theta, beta, 
delta, gamma, etc.) the values of complexity significantly 
decrease. A larger variability in frequencies induces higher 
values of complexity. The clearest example of this tendency 
is found in generalized epileptic attacks, that are precisely 
characterized because the brain is synchronized 
pathologically during them (see “ absence of attacks”). 
Immediately before the episode, and during it, the values 
of complexity decrease dramatically and then increase 
when the episode disappears75. A less dramatic but also 
significant case is that recently demonstrated in Alzheimer’s 
patients73, 77, in whom the complexity of their brain activity 
decreases in a generalized way when compared with healthy 
elderly subjects. Contrarily, we find conditions such as 
schizophrenia in which greater variability of the brain 
activity (remember the “dysrhythmia”) is associated with 
an increase in the values of LZ complexity66, 80. 

It is clear that the application of this method in clinical 
populations is very recent and therefore there is much to be 
determined. However, it can be expected that any condition 
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we are going on to the next point.
3.  As we have just seen, it seems that several lines of 

evidence converge in a positive relationship between 
brain connectivity and complexity of the signal and this 
would be the reason why the conditions that occur with 
some type of disconnection process, such as dementias, 
would produce lower complexity values. However, things 
are not so simple. There is schizophrenia in which, 
generally, the highest values of complexity are found and 
in which one of the most important neuro-pathological 
hypothesis is that of disconnection. Isn’t this contradictory? 
It is, unless we take into account the last piece of the 
puzzle: the evolutive character of the brain connectivity 
linked with neurodevelopment. Up to now, we have 
considered studies in which, as on another part is 
common, only the existence of significant differences 
between control groups and pathological groups has 
been considered. The patients sometimes have higher 
complexity values and sometimes lower ones, but the 
investigations do not go much beyond this. However, 
Anokhin et al.87 and Meyer-Lindenberg88 describe the 
fundamental fact: there is a rule that associates 
complexity values with the maturation process, in such a 
way that these values rise abruptly from childhood to 
adolescence, maintaining this tendency, although with 
sustained but not abrupt increase, until 60 years of age, 
when the samples of both authors ended. That is, there 
would be a standardized process of evolution of 
complexity associated with age.

 Recently, our group confirmed the finding for the age 
segment between childhood and adolescence77, but 
demonstrated that the process of increase of complexity 
reaches the stabilization point after which the 
complexity values begin to slowly decrease until late 
old age77.  All of the authors who have contributed to 
this line of investigation support that there should be 
a clear link between this pattern of growth-
stabilization-reduction of the EEG-MEG complexity 
values and some basic process of neurodevelopment.   
At present, and considering the data that we have and 
that have been partially described, the process having 
the firmest base is that of maturation of the white 
matter and therefore (we return to the previous point) 
of establishment of effective nerve connections. In 
agreement with Bartzokis89,  the gray matter reaches 
its maximum volume in adolescence and begins to 
decrease on a negative slope until the old-age. The 
white matter evolves in a totally different way. First, 
there is a process of a very important increase of 
volume until adolescence, and this has a sustained 
maintenance until a maximum of 44 years when it 
slowly begins to decrease until old age. In fact, as we 
have been able to verify in figure 1, it is a process that 
almost perfectly emulates what we have described for 
the LZ complexity (figure 1). 

the predominance of low-frequency bands. 
With these backgrounds, we could hypothesize that the 
variations in complexity  also depend on the greater or 
lesser grade of connectivity of the brain generated by 
the signals we are recording. This hypothesis has been 
evaluated by at least two authors with contradictory 
results.  Karl Friston (83, 84) tested this hypothesis in 
the context of research on neuropathology of 
schizophrenia. For Friston, the basic neurobiological 
problem underlying schizophrenia is disconnection 
between brain areas more than the lesion of a specific 
brain area. Under these conditions, he performed a 
study, programming a neural network that would 
simulate the characteristics which could be called a 
“brain with schizophrenia” and calculating the 
consequences of the functioning of this network in 
terms of complexity. Their results indicated that the 
disconnection is associated with an increase of the 
values of complexity. To some degree, this would be 
contradictory to the neurophysiological knowledge we 
have. Sporns et al.85 performed a review of the literature 
on brain connectivity and complexity, focusing on the 
relationship between neuroanatomy and dynamics of 
the brain activity. The hypothesis of Sporns was that the 
most connected brains produce more complex 
functionings. To test their hypothesis, they also 
performed several simulations, verifying in this case 
that the most connected neural networks had higher 
functional complexity values.
It is clear that these works on simulation should be 
considered with great care and that we need studies 
that correlate the “real” brain connectivity with the 
complexity values of the neurophysiological signal. In 
this sense, our research group is carrying out an 
investigation that could be important to elucidate this 
basic problem. Following the hypothesis of Sporns et 
al. who proposed a positive relationship between 
complexity and connectivity, we performed a 
correlational study in which, on the one hand, we 
obtained the values of LZ complexity and on the other, 
we calculated the values of fractional anisotropy using 
magnetic resonance diffusion tensor imaging of 17 
healthy adult patients86.  The fractional anisotropy 
values are an indicator of axonal integrity and thus 
evaluate real brain connectivity. As we expected, there 
is a significant, and always positive, correlation 
between fractional anisotropy values and complexity 
values, that appears in zones that are fundamental for 
brain functioning, as the corpus callosum or the medial 
temporal lobe white matter. This indicates that better 
anatomical connectivity is associated with higher 
values of complexity.
What is the importance of this for the investigation of 
mental disorders? From our point of view, it is 
fundamental. However, in order to justify this statement, 

49



Analysis of brain complexity and mental disordersA. Fernández, et al

  Actas Esp Psiquiatr 2010;38(4):229-238234

AGE

LZ
 C

O
M

PL
EX

IT
Y 

   
   

  

The fi gure shows the relationship between complexity of the 
brain activity and age. As can be observed, the complexity values 
increase sharply until adolescence, maintain a sustained growth until 
approximately 40 years and after this age begin to decrease slowly. 
This reduction is more important after the ages of 65-70 years

Figure 1

data would speak of a component of alteration of the 
“normal” process of maturation but also of a neuro-
degenerative component. Again, the fact that the scores of 
complexity have an evolutive process increases the model’s 
sensitivity and specificity. 

Finally, we are faced with a disorder in which there is 
no clear neuromaturation or neurodegenerative component 
but in which it is essential to establish a marker to try to 
predict the success of the therapy: major depression. In 
this case, the results would be especially interesting (see 
79). Patients with major depression have higher initial 
values of complexity than the controls, but again their 
scores do not involve positively based on age but rather 
remained stable, showing a flat growth line. After 6 months 
of treatment with mirtazapine, that was effective in every 
case, the complexity values of the patients decreased in 
the entire brain, and even more important, the patients 
recovered the “normal” tendency for the complexity values 
to increase with age. Was there any data that would allow 
us to predict the good therapeutic response? The answer 
was complicated since all the patients improved 
significantly. Thus, we had to divide them into those with 
“improvement” (score on 17-item Hamilton scale between 
7 and 10 points) and “total remission” (score on 17-item 
Hamilton scale less than 7 points). The results show: 1. that 
the younger patients, and above all, those with higher 
initial complexity values were within the group of “total 
remission” and 2. that those patients in which the 
complexity values had decreased more in the post-
treatment measure were again those found within the 
group of “total remission.”

In accordance with the data that we have presented in 
three conditions having enormous importance: that is, 
ADHD, schizophrenia and major depression, the calculation 
of LZ complexity allows us to establish a potential marker 
for the diagnosis, evolution and prediction of the 
therapeutic response. This statement is supported by the 
existence of a “normal” process of evolution of the 
complexity values based on age that is probably determined 
by the maturation of the brain white matter and by the 
establishment of effective brain connections. The condition 
itself may increase or decrease the complexity values but 
in every case “it breaks” this natural process of evolution. 
When, as in the ADHD, the disorder means a delay in the 
neuromaturation process, the scores of the LZ complexity 
also have a delay in their process of age-based increase. 
When the condition has a neurodegenerative component 
(Alzheimer and perhaps schizophrenia), this rupture is 
characterized by a sudden and progressive decrease of the 
values of complexity based on age and is not modified with 
the treatment. When the treatment is effective, as in our 
study on major depression, the values of complexity recover 
this natural tendency to growth. 

The consequences of these findings are very important. 
The first one is that we should not contemplate the 
differences between patients and control in a static way, but 
rather evolutively. The patients may have higher or lower 
complexity values, but what is truly important is to observe 
what their value is within the evolution process. Thus, 
patients with ADHD have lower frontal LZ values than the 
control children. However, even more important, while the 
controls sharply increase their complexity values until the 
age of 14, children with ADHD do not follow this tendency. 
Thus, the differences between patients and controls grow 
with age until reaching a sensitivity of 92% and specificity 
of 100% in children over 9 years (31).

The example of ADHD is important because it indicates 
the LZ complexity could be a diagnostic marker in all those 
mental and/or behavior disorders in which there is a 
neuromaturation component. Considering this premise, we 
should test the sensitivity of the LZ complexity in a disorder 
in which the debate between the neuromaturation and 
neurodegenerative hypotheses have attained great 
importance: that is, schizophrenia. Our results (80) were 
conclusive. The younger patients with schizophrenia had 
higher values of complexity than the controls of their same 
age. However, while the controls fulfilled the “rule” of 
increasing the LZ values based on age, patients with 
schizophrenia had the opposite tendency. At this point, it is 
important to indicate that the complexity values in ADHD 
children did not increase with age, but rather that the 
tendency was for these values to remain relatively stable. 
Patients with schizophrenia had a clearly significant negative 
slope, identical to that shown by Alzheimer’s patients. These 
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The fi gure again shows the relationship between complexity of 
the brain activity and age, now including the variations associated 
with certain conditions. As can be observed, there are patterns 
that we consider merely “quantitative” differences, as in the case 
of Alzheimer’s disease. Here, healthy subjects and patients have 
identical tendencies towards lower values based on age but in 
Alzheimer’s, this reduction is sharper. In the remaining samples 
(ADHD, major depression, schizophrenia) the tendency of the values 
of complexity represent a rupture compared to the “normal” course 
of the evolution.

Figure 1
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However, these last lines summarize the essence of 
change of the perspective that we are proposing with our 
study: against the  traditional static point of view, we state 
that it is possible to capture the evolutive and dynamic 
component of mental disorders (90) and, what is more 
important, that this evolutive component maximizes the 
diagnostic and prognostic powers of the evaluation tools. 
Figure 2 presents a summary of these findings and of the 
relationship between the “normal” process of evolution of 
the LZ complexity and their variations in the conditions 
studied (figure 2). 
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